Exploring the Laplacian in Computer Graphics

Crane He Chen The Johns Hopkins University

Week 4

2023 Fall

WARNING

This is not a math course. You still need to take Multivariable Calculus, Linear Algebra/System, Differential Geometry, FFT in Graphics and Vision for that purpose.

"Matrix"

e.g.

A collection of numbers, organized neatly in a grid/table

$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ This is what we call a 3 by 3 matrix

Where can a function f live?

From high school:

How about these?

$f(x) = x^2$

 $f(x, y) = x^2 + y^2$

 $f(x, y, z) = x^2 + y^2 + z^2$

Where can a function f live on the 2D grid?

 $f(x, y) = x^2 + y^2$

Where can a function f live on the 3D grid?

$f(x, y, z) = x^2 + y^2 + z^2$

$f(x, y, z) = x^2 + y^2 + z^2$

Where can a function f live on the triangle mesh?

A tool for signal processing!

1D: audio processing, geometry processing 2D: image processing, geometry processing 3D: geometry processing

The Laplacian

A function $f: \mathbb{R}^n \to \mathbb{R}$

A function $\Delta f : \mathbb{R}^n \to \mathbb{R}$

an operator

one dimensional

continuous setting

discrete setting

* example stolen from Justin Solomon

 $\Delta f(t) = \frac{d^2 f(t)}{dt^2}$

$\Delta f[t] = f[t+1] - 2f[t] + f[t-1]$

one dimensional (audio processing)

You have an audio signal

f(t) = amplitude of the sound at time t

$\Delta f[t] = f[t+1] - 2f[t] + f[t-1]$

Q: When would $|\Delta f[t]|$ be large?

A: rapid change of the sound, e.g. a drum hit

one dimensional (geometry processing)

You have a pearl necklace with pearls of graduated sizes

f(t) = size of pearl t

$\Delta f[t] = f[t+1] - 2f[t] + f[t-1]$

Q: When would $\left| \Delta f[t] \right|$ be large?

A: when the size of pearl t is significantly from its neighbors!

two dimensional (image processing)

- A: regular grid
- Q: What's the dimension? (we learned this in Week2)
- A: height by width by 3
- Q: If the Laplacian can highlight rapid change, how could it help enhancing your image?
- A: image sharpening!

Q: How are images stored in computer? (we learned this in Week2)

two dimensional (image processing)

f(i,j) = pixel value

 $\Delta f(i,j) = \frac{\partial^2 f}{\partial i^2}$

$$\frac{\partial^2 f}{\partial j^2} + \frac{\partial^2 f}{\partial j^2}$$

The "stencil" / "kernel" $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

two dimensional (image processing)

- Sweep the "stencil" / "kernel" across the image 1.
- 2. As you sweep, conduct a calculation called "convolution" between the stencil and the patch of that image.
- 3. You get sth highlighting the rapid change, we call that "edge map"
- 4. Add the edge map back to the original image, and get the sharpened image

two dimensional (image processing)

http://www.idlcoyote.com/ip_tips/sharpen.html

two dimensional (image processing)

Note that, if you do the sharpening on gradient domain, it gives you better results. But gradient-domain-processing a more advanced topic, covered in 601.457.

before

http://grail.cs.washington.edu/projects/gradientshop/demos/gs_paper_TOG_2009.pdf

after

three dimensional (geometry processing)

* image credit: Adobe Stock

Where does function f live?

imagine you are knitting a turtle.....and you are sewing beads (function values) at the knitting cross (vertices)

three dimensional (geometry processing)

scalar function living on vertices:

Laplacian:

* image credit: Adobe Stock

beads

helps us understand how each bead is different from its neighboring beads

"quality inspector" of beads distribution

"bridge" beads (the scalar function)

knit (the shape)

three dimensional (geometry processing)

do lots of things to the beads or even to the turtle!

- change the beads
- change the turtle (stretch/shrink parts)

With Laplacian, now you have the mathematical foundation to

three dimensional (geometry processing) You can do lots of things by changing the beads!

* ogre model stolen from Keenan Crane

texture transfer

three dimensional (geometry processing)

You can do lots of things by changing the beads!

Sharp, Nicholas, et al. "Diffusionnet: Discretization agnostic learning on surfaces." ACM Transactions on Graphics (TOG) 41.3 (2022): 1-16.

three dimensional (geometry processing)

You can do lots of things by changing the knitting!

your beads: bounded biharmonic weights

animation (the beads)

Jacobson, Alec, et al. "Bounded biharmonic weights for real-time deformation." ACM Trans. Graph. 30.4 (2011): 78.

three dimensional (geometry processing)

You can do lots of things by changing the knitting!

changing your knitting: animating the hand

Jacobson, Alec, et al. "Bounded biharmonic weights for real-time deformation." ACM Trans. Graph. 30.4 (2011): 78.

animation (the knitting change)

three dimensional (geometry processing)

You can do lots of things by changing the knitting!

mesh simplification (the beads)

Chen, Crane He. "Estimating Discrete Total Curvature with Per Triangle Normal Variation." SIGGRAPH Talks 2023

three dimensional (geometry processing) You can do lots of things by changing the knitting!

mesh simplification (the knitting change)

Chen, Crane He. "Estimating Discrete Total Curvature with Per Triangle Normal Variation." SIGGRAPH Talks 2023

three dimensional (geometry processing)

You can do lots of things by changing the knitting!

mesh simplification (the knitting change)

Chen, Crane He. "Estimating Discrete Total Curvature with Per Triangle Normal Variation." SIGGRAPH Talks 2023

happening in the world of computer graphics.

We call it **"Spectral Geometry"**

equation, heat equation, etc.

This seemingly algebraic concept relates to geometry analysis

Laplacian is ubiquitous in computer graphics, it shows up in Dirichlet energy, Poisson equation, Laplace's equation, wave

Take-aways from Today's Lecture

- You learned intuition of the Laplacian in all dimensions
- You remembered the "beads on turtle" example
- You learned some examples of Laplacian applications

https://forms.gle/XmycEdkaCN4o6gbp7

Now, your turn!

We'll wok on coloring the bunny together!

Go to the course Github page to download code!

Pair-Coding

```
int main(int argc, char *argv[])
{
 using namespace Eigen;
 using namespace std;
```

```
// variable definition
Eigen::MatrixXd V, PD1, PD2, PV1, PV2;
Eigen::MatrixXi F;
Eigen::VectorXd total_curvature, total_curvature_vis;
// calculate total curvature
igl::read_triangle_mesh("../data/BigBuckBunny.ply",V,F);
igl::principal_curvature(V, F, PD1, PD2, PV1, PV2);
total_curvature = PV1.array().square() + PV2.array().square();
total_curvature_vis = total_curvature.array().pow(0.01);
// visualization
polyscope::init();
polyscope::options::groundPlaneMode = polyscope::GroundPlaneMode::ShadowOnly;
auto psMesh = polyscope::registerSurfaceMesh("bunny", V, F);
auto TotalCurvature = polyscope::getSurfaceMesh("bunny");
auto ScalarQuantity1 = TotalCurvature->addVertexScalarQuantity("TotalCurvature", total_curvature_vis);
ScalarQuantity1->setColorMap("jet");
```

```
ScalarQuantity1->setEnabled(true);
polyscope::options::shadowDarkness = 0.1;
polyscope::show();
```


Are There Any Questions?

