Exploring the Laplacian in Computer Graphics

Crane He Chen The Johns Hopkins University

Week 5

2023 Fall

What examples can you think of for Laplacian in 1D, 2D, 3D?

one dimensional (geometry processing)

You have a pearl necklace with pearls of graduated sizes

f(t) = size of pearl t

$\Delta f[t] = f[t+1] - 2f[t] + f[t-1]$

Q: When would $|\Delta f[t]|$ be large?

A: when the size of pearl t is significantly from its neighbors!

two dimensional (image processing)

three dimensional (geometry processing)

scalar function living on vertices:

Laplacian:

beads helps us understand how each bead is different from its neighboring beads

"quality inspector" of beads distribution

knit (the shape)

three dimensional (geometry processing)

You can do lots of things by changing the beads!

mesh simplification (the beads)

Sharp, Nicholas, et al. "Diffusionnet: Discretization agnostic learning on surfaces." ACM Transactions on Graphics (TOG) 41.3 (2022): 1-16. Jacobson, Alec, et al. "Bounded biharmonic weights for real-time deformation." ACM Trans. Graph. 30.4 (2011): 78. Chen, Crane He. "Estimating Discrete Total Curvature with Per Triangle Normal Variation." SIGGRAPH Talks 2023

You can do lots of things by changing the knitting!

animation (the knitting change)

mesh simplification (the knitting change)

Review Questions

Come to the blackboard!

Where does this function live?

 $f(x, y, z) = x^2 + y^2 + z^2$

What is the Laplacian?

Let's take turns, I want to hear thoughts from everyone!

Review Questions

What is "mesh"?

Let's take turns, I want to hear thoughts from everyone!

Many Definitions

- Deviation from local average
- Sum of second derivatives
- Divergence of gradient

pronounced as "nabla"

pronounced as "delta"

This is not to be confused with

divergence > 0 intuition: "source"

divergence < 0intuition: "sink"

 $\int_{M} f(x) dx \quad \text{integral}$

Think of it as "sum", continuously M means the region you want the "sum" to happen. Let's say M means $1 \sim 5$ $sum \approx f(1) + f(2) + f(3) + \dots$ $sum \approx f(1) + f(1.1) + f(1.2) + \ldots + f(3.1) + f(3.2) + \ldots$

Let's formalize this a bit more!

https://en.wikipedia.org/wiki/Laplace%E2%80%93Beltrami_operator

What's the sum of angles of a triangle on a sphere?

Let's formalize this a bit more!

High school: Euclidean space

When two straight lines intersect with a line segment, if the sum of the interior angles alpha and beta is less than 180, the two straight lines meet on that side.

https://en.wikipedia.org/wiki/Euclidean_space

https://en.wikipedia.org/wiki/Parallel_postulate

Let's formalize this a bit more!

High school: Euclidean space

When the German geometer János Bolyai tried to prove the parallel postulate, he dis-proved it instead. And that led to an important discovery called Non-Euclidean geometry, which was only recognized after he passed away.

https://en.wikipedia.org/wiki/Euclidean_space

https://en.wikipedia.org/wiki/Parallel_postulate

János Bolyai

Let's formalize this a bit more!

"The Laplacian" (Euclidean domain)

https://en.wikipedia.org/wiki/Euclidean_space

Let's formalize this a bit more!

"Laplace-Beltrami Operator" (curved domain)

https://en.wikipedia.org/wiki/Laplace%E2%80%93Beltrami_operator

Let's formalize this a bit more!

Key idea: Laplacian is deviation from local average

deviation from local average

Figure stolen from Keenan Crane slides

Formalizing Laplacian (Derivative)

Let's formalize this a bit more!

Who wants to try this? What's Δu ?

 $\Delta u = 6x_1 + 6x_2 + 6x_3$

sum of second derivatives

$u(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3$

Formalizing Laplacian (Calculus)

Let's formalize this a bit more!

Figure stolen from Keenan Crane slides

Dirichlet Energy

Dirichlet energy is closely related to the Laplacian!

Farbman et al. SIGGRAPH 2009

Figure stolen from Misha Kazhdan slides

Dirichlet energy is closely related to the Laplacian!

Given boundary, can you find a function that fills in the interior "as smooth as possible"?

Figure stolen from Keenan Crane slides

- Minimize the Dirichlet energy!

Dirichlet energy is closely related to the Laplacian!

Minimizing the Dirichlet energy is equal to solving a Laplace equation

Take-aways from Today's Lecture

- You learned what's beyond Euclidean geometry
- You learned a terminology "Laplace-Beltrami Operator"
- You learned three formal definitions of the Laplacian
- You learned a terminology "Dirichlet Energy"

Pair-Coding

So far, you are coding:

- How to visualize a 3D data using python

• How to use popular libraries in computer graphics, Libigl, Polyscope

• How to compile and run the first algorithm in C++ using Make

swept volume

https://www.dgp.toronto.edu/projects/swept-volumes/ https://www.dgp.toronto.edu/projects/cubic-stylization/

More gears for art contest!

cubic stylization

Now, your turn!

We'll wok on coloring the bunny together!

Go to the course Github page to download code!

Pair-Coding

```
int main(int argc, char *argv[])
{
 using namespace Eigen;
 using namespace std;
```

```
// variable definition
Eigen::MatrixXd V, PD1, PD2, PV1, PV2;
Eigen::MatrixXi F;
Eigen::VectorXd total_curvature, total_curvature_vis;
// calculate total curvature
igl::read_triangle_mesh("../data/BigBuckBunny.ply",V,F);
igl::principal_curvature(V, F, PD1, PD2, PV1, PV2);
total_curvature = PV1.array().square() + PV2.array().square();
total_curvature_vis = total_curvature.array().pow(0.01);
// visualization
polyscope::init();
polyscope::options::groundPlaneMode = polyscope::GroundPlaneMode::ShadowOnly;
auto psMesh = polyscope::registerSurfaceMesh("bunny", V, F);
auto TotalCurvature = polyscope::getSurfaceMesh("bunny");
auto ScalarQuantity1 = TotalCurvature->addVertexScalarQuantity("TotalCurvature", total_curvature_vis);
ScalarQuantity1->setColorMap("jet");
```

```
ScalarQuantity1->setEnabled(true);
polyscope::options::shadowDarkness = 0.1;
polyscope::show();
```


Are There Any Questions?

