Exploring the Laplacian in Computer Graphics

Week 6

Crane He Chen
The Johns Hopkins University

2023 Fall

Where could a function live on triangle meshes?

Answer

```
vertices
edges
faces
```


What is the Laplacian?

Answer

three dimensional (geometry processing)

scalar function living on vertices:
Laplacian:
beads
helps us understand how each bead is different from its neighboring beads

"quality inspector"
of beads distribution

Answer

- Deviation from local average
- Sum of second derivatives
- Divergence of gradient

$$
\Delta u=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}
$$

What is the other name of "the Laplacian"? How are they slightly different from each other?

Answer

"The Laplacian" (Euclidean domain)

Δ
"Laplace-Beltrami Operator" (curved domain)

Answer

High school: Euclidean space

Euclid's postulate 5:

János Bolyai

When two straight lines intersect with a line segment, if the sum of the interior angles alpha and beta is less than 180, the two straight lines meet on that side.

What is Dirichlet energy?

Answer

Dirichlet energy

$$
\int_{\Omega}\|\nabla g(p)\|^{2} d p
$$

Minimizing Dirichlet energy (as smooth as possible)

Calculate the Laplacian on Triangle Meshes

Discrete Laplacian

Options 1 to think about it (weights on vertices)

Discrete Laplacian

Options 1 to think about it (weights on vertices)

If there are N vertices on a triangle mesh,
the Laplacian can be represented by a NxN table ("matrix") L
$L_{i j}$ is row i , column j of this table

Applying the Laplacian on function f , we get another function g , where

$$
g_{j}=\sum_{v_{j} \in V} L_{i j} f_{j}
$$

Discrete Laplacian

Options 2 to think about it (weights on edges)

How to calculate the Laplacian?

Options 2 to think about it (weights on edges)

Applying the Laplacian on function f , we get another function g , where

$$
g_{j}=\sum_{v_{j} \in N b r\left(v_{i}\right)} L_{i j}\left(f_{j}-f_{i}\right)
$$

Brainstorm:
 What are possible ways to define these edge weights?

hint: graph theory
weights
(the Laplacian)

How to calculate the Laplacian?

Options 2 to think about it (weights on edges)

Applying the Laplacian on function f , we get another function g , where

$$
g_{j}=\sum_{v_{j} \in N b r\left(v_{i}\right)} L_{i j}\left(f_{j}-f_{i}\right)
$$

Tutte Laplacian:

$$
L_{i j}=1
$$

Graph Laplacian:
$L_{i j}=1 /$ valence

How to calculate the Laplacian?

Options 2 to think about it (weights on edges)

Cotangent Laplacian (most widely used)

$$
L_{i j}= \begin{cases}\frac{1}{2}\left(\cot \left(\alpha_{i j}\right)+\cot \left(\beta_{i j}\right)\right) & \text { if } i \neq j \text { and } v_{j} \in \operatorname{Nbr}\left(v_{i}\right) \\ -\sum_{v_{k} \in \operatorname{Nbr}\left(v_{i j}\right)} L_{i k} & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Derive the cotangent Laplacian

Continuous case

1. Pinching introduces a deformation
2. There is a local difference of the height map (the Laplacian of height function)
3. Some local grid squares are stretched, others are compressed, in other words, the change of area (gradient of area)
4. They are both describing the deformation and has a connection
[^0]
Derive the cotangent Laplacian

Continuous case

If the value of the function at vertex v is the position of v, then the Laplacian of the function at v should be the area gradient.
pinching the rubber sheet

Derive the cotangent Laplacian

Discrete case

Desirable properties for the discrete Laplacian

- Sparsity (only neighbors, no effect from distant vertices)
- Positivity (when averaging neighboring values, we want non-negative weights)
- Symmetry (this inherits from continuous setting)
- Linear Precision (If the mesh lives in a plane and the function values are obtained by sampling a linear function, the Laplacian of the function should be zero.)

Derive the cotangent Laplacian

Discrete case

Given a triangle ($\mathrm{o}, \mathrm{p}, \mathrm{q}$), what direction should we move o , in order to maximally increase the area?

Derive the cotangent Laplacian

Discrete case

Given a triangle ($\mathrm{o}, \mathrm{p}, \mathrm{q}$), what direction should we move o , in order to maximally increase the area?

The area of triangle is half base times height.
If we set pq as the base, we would want o to move in the direction perpendicular to pq.

Derive the cotangent Laplacian

Discrete case

If we take a step size eps in that direction, how will the area change?

Derive the cotangent Laplacian

Discrete case

If we take a step size ϵ in that direction, how will the area change?

$$
\epsilon|p-q| / 2
$$

Derive the cotangent Laplacian

Discrete case

Therefore, the gradient is the vector perpendicular to pq, with the length $|\mathrm{p}-\mathrm{q}| / 2$.

Derive the cotangent Laplacian

Discrete case

The area of triangle is half base times height.
If we set pq as the base, we would want o to move in the direction perpendicular to pq .

Derive the cotangent Laplacian

Discrete case

What's the vector perpendicular to $\mathrm{p}-\mathrm{q}$ and with length $|\mathrm{p}-\mathrm{q}| / 2$?

$$
\begin{aligned}
& \text { After derivations (details given at the "Other Resources"), we have } \\
& \frac{1}{2}(\cot (\beta) p+\cot (\gamma) q)
\end{aligned}
$$

Derive the cotangent Laplacian

Discrete case

This leads to the cotangent Laplacian:

$$
L_{i j}= \begin{cases}\frac{1}{2}\left(\cot \left(\alpha_{i j}\right)+\cot (\beta)_{i j}\right) & \text { if } i \neq j, v_{j} \in \operatorname{Nbr}\left(v_{i}\right) \\ -\sum L_{i k} & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Take-aways from Today's Lecture

- You learned two options to understand Laplacian as "weights"
- You learned Tutte Laplacian, Graph Laplacian
- You learned cotangent Laplacian

Pair-Coding

More gears for art contest!

decimation

cubic stylization

swept volume

https://www.dgp.toronto.edu/projects/swept-volumes/ https://www.dgp.toronto.edu/projects/cubic-stylization/

Now, your turn!

Go to the course Github page to download code!
We'll wok on coloring the bunny together!

Pair-Coding

```
int main(int argc, char *argv[])
{
    using namespace Eigen;
    using namespace std;
    // variable definition
    Eigen::MatrixXd V, PD1, PD2, PV1, PV2;
    Eigen::MatrixXi F;
    Eigen::VectorXd total_curvature, total_curvature_vis;
    // calculate total curvature
    igl::read_triangle_mesh("../data/BigBuckBunny.ply",V,F);
    igl::principal_curvature(V, F, PD1, PD2, PV1, PV2);
    total_curvature = PV1.array().square() + PV2.array().square();
    total_curvature_vis = total_curvature.array(). pow(0.01);
    // visualization
    polyscope::init();
    polyscope::options::groundPlaneMode = polyscope::GroundPlaneMode::ShadowOnly;
    auto psMesh = polyscope::registerSurfaceMesh("bunny", V, F);
    auto TotalCurvature = polyscope::getSurfaceMesh("bunny");
    auto ScalarQuantity1 = TotalCurvature->addVertexScalarQuantity("TotalCurvature", total_curvature_vis);
    ScalarQuantity1->setColorMap("jet");
    ScalarQuantity1->setEnabled(true);
    polyscope::options::shadowDarkness = 0.1;
    polyscope::show();
}
```


Are There Any Questions?

[^0]: pinching the rubber sheet

