Exploring the Laplacian in Computer Graphics

Crane He Chen The Johns Hopkins University

Week 6

2023 Fall

Review questions

Where could a function live on triangle meshes?

vertices

edges

faces

Review questions

What is the Laplacian?

three dimensional (geometry processing)

scalar function living on vertices:

Laplacian:

beads helps us understand how each bead is different from its neighboring beads

"quality inspector" of beads distribution

knit (the shape)

• Deviation from local average

• Sum of second derivatives

• Divergence of gradient

Figure stolen from Keenan Crane slides

What is the other name of "the Laplacian"? How are they slightly different from each other?

- "The Laplacian"
- (Euclidean domain)

"Laplace-Beltrami Operator"

(curved domain)

High school: Euclidean space

Euclid's postulate 5:

When two straight lines intersect with a line segment, if the sum of the interior angles alpha and beta is less than 180, the two straight lines meet on that side.

Review questions

What is Dirichlet energy?

Dirichlet energy
$$\int_{\Omega} \|\nabla g(p)\|^2 dx$$

Minimizing Dirichlet energy (as smooth as possible)

Figure stolen from Keenan Crane slides

dp

Our Goal Today

Calculate the Laplacian on **Triangle Meshes**

Discrete Laplacian

function f on vertices

an operator

Discrete Laplacian

Options 1 to think about it (weights on vertices)

values (function living on vertices)

weights (the Laplacian)

new values (function living on vertices)

Options 1 to think about it (weights on vertices)

If there are N vertices on a triangle mesh, the Laplacian can be represented by a NxN table ("matrix") L

 L_{ii} is row i, column j of this table

Applying the Laplacian on function f, we get another function g, where

$$g_j = \sum_{v_j \in V} L_{ij} f_j$$

Discrete Laplacian

Options 2 to think about it (weights on edges)

weights (the Laplacian)

How to calculate the Laplacian?

Options 2 to think about it (weights on edges)

Applying the Laplacian on function f, we get another function g, where

$$g_j = \sum_{v_j \in Nbr(v_i)} L_{ij}(f_j - f_i)$$

weights (the Laplacian)

Brainstorm: What are possible ways to define these edge weights? hint: graph theory

How to calculate the Laplacian?

Options 2 to think about it (weights on edges)

Applying the Laplacian on function f, we get another function g, where

 $g_j = \sum L_{ij}(f_j - f_i)$ $v_i \in Nbr(v_i)$

Tutte Laplacian: $L_{ii} = 1$

weights (the Laplacian)

Figure stolen from Misha Kazhdan slides

 $L_{ii} = 1$ /valence

How to calculate the Laplacian?

Options 2 to think about it (weights on edges)

Cotangent Laplacian (most widely used)

$$L_{ij} = \begin{cases} \frac{1}{2} \left(\cot(\alpha_{ij}) + \cot(\beta_{ij}) \right) & \text{if } i \neq j \text{ and } v_j \in \mathbb{N} \\ -\sum_{v_k \in \operatorname{Nbr}(v_i)} L_{ik} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Figure stolen from Misha Kazhdan slides

 $Nbr(v_i)$

Continuous case

pinching the rubber sheet

https://cacm.acm.org/news/163925-a-touchscreen-you-can-pinch-poke-and-stretch/fulltext?mobile=false

2.

3.

4.

Pinching introduces a deformation There is a local difference of the height map (the Laplacian of height function) Some local grid squares are stretched, others are compressed, in other words, the change of area (gradient of area) They are both describing the deformation and has a connection

Continuous case

If the value of the function at vertex v is the position of *v*, then the Laplacian of the function at *v* should be the area gradient.

pinching the rubber sheet

https://cacm.acm.org/news/163925-a-touchscreen-you-can-pinch-poke-and-stretch/fulltext?mobile=false

Discrete case

Desirable properties for the discrete Laplacian

- Sparsity (only neighbors, no effect from distant vertices)
- Positivity (when averaging neighboring values, we want non-negative weights) • Symmetry (this inherits from continuous setting)
- Linear Precision (If the mesh lives in a plane and the function values are obtained by sampling a linear function, the Laplacian of the function should be zero.)

Discrete case

Given a triangle (o, p, q), what direction should we move o, in order to maximally increase the area?

Stolen from Misha Kazhdan slides

Discrete case

Given a triangle (o, p, q), what direction should we move o, in order to maximally increase the area?

The area of triangle is half base times height. If we set pq as the base, we would want o to move in the direction perpendicular to pq.

0

Stolen from Misha Kazhdan slides

Discrete case

If we take a step size eps in that direction, how will the area change?

Stolen from Misha Kazhdan slides

Discrete case

If we take a step size ϵ in that direction, how will the area change?

 $\epsilon |p-q|/2$

Stolen from Misha Kazhdan slides

Discrete case

Therefore, the gradient is the vector perpendicular to pq, with the length |p-q|/2.

0

Stolen from Misha Kazhdan slides

Discrete case

The area of triangle is half base times height. If we set pq as the base, we would want o to move in the direction perpendicular to pq.

0

Stolen from Misha Kazhdan slides

Discrete case

 $\frac{1}{2}(\cot(\beta)p + \cot(\gamma)q)$

Stolen from Misha Kazhdan slides

What's the vector perpendicular to p-q and with length |p-q|/2?After derivations (details given at the "Other Resources"), we have

Discrete case

This leads to the cotangent Laplacian:

$$L_{ij} = \begin{cases} \frac{1}{2} (\cot(\alpha_{ij}) + \cot(\beta)_{ij}) & \text{if } i \neq 0\\ -\sum L_{ik} & \text{if } i = 0\\ 0 & \text{otherwise} \end{cases}$$

Stolen from Misha Kazhdan slides

 $\neq j, v_j \in Nbr(v_i)$ = jerwise

Take-aways from Today's Lecture

- You learned Tutte Laplacian, Graph Laplacian
- You learned cotangent Laplacian

• You learned two options to understand Laplacian as "weights"

Pair-Coding

More gears for art contest!

decimation

cubic stylization

https://www.dgp.toronto.edu/projects/swept-volumes/ https://www.dgp.toronto.edu/projects/cubic-stylization/

https://github.com/HeCraneChen/curvature-qslim-mesh-decimation

swept volume

Now, your turn!

We'll wok on coloring the bunny together!

Go to the course Github page to download code!

Pair-Coding

```
int main(int argc, char *argv[])
{
 using namespace Eigen;
 using namespace std;
```

```
// variable definition
Eigen::MatrixXd V, PD1, PD2, PV1, PV2;
Eigen::MatrixXi F;
Eigen::VectorXd total_curvature, total_curvature_vis;
// calculate total curvature
igl::read_triangle_mesh("../data/BigBuckBunny.ply",V,F);
igl::principal_curvature(V, F, PD1, PD2, PV1, PV2);
total_curvature = PV1.array().square() + PV2.array().square();
total_curvature_vis = total_curvature.array().pow(0.01);
// visualization
polyscope::init();
polyscope::options::groundPlaneMode = polyscope::GroundPlaneMode::ShadowOnly;
auto psMesh = polyscope::registerSurfaceMesh("bunny", V, F);
auto TotalCurvature = polyscope::getSurfaceMesh("bunny");
auto ScalarQuantity1 = TotalCurvature->addVertexScalarQuantity("TotalCurvature", total_curvature_vis);
ScalarQuantity1->setColorMap("jet");
```

```
ScalarQuantity1->setEnabled(true);
polyscope::options::shadowDarkness = 0.1;
polyscope::show();
```


Are There Any Questions?

