Estimating Discrete Total Curvature with Per Triangle Normal Variation

Crane He Chen

Week9
The Johns Hopkins University

Administration

Next week's meeting time

Problem Statement

The Output
A method for computing total curvature of triangle meshes or point clouds, while avoiding the calculation of the shape operator

How the calculation works

SIGGRAPH 2023
 LOS ANGELES+ 6-10 AUG

Problem Statement

Problem Statement

Background: Surface Curvature

$$
\begin{array}{ll}
\text { Minimal Curvature } & \kappa_{1}=\kappa_{\min }=\min _{\phi} \kappa_{n}(\phi) \\
\text { Maximal Curvature } & \kappa_{2}=\kappa_{\max }=\max _{\phi} \kappa_{n}(\phi)
\end{array}
$$

* figure of normal curvature stolen from NYU lecture slides (Daniele's GP course)

Problem Statement

Background: Surface Curvature

Gaussian curvature energy

$$
a b s(K)=\left\|\kappa_{1} \cdot \kappa_{2}\right\|
$$

low curvature

bending energy

$$
E_{b}=\left(\frac{k_{1}+k_{2}}{2}\right)^{2}
$$

high curvature

Problem Statement

Background: Surface Curvature

Gaussian curvature vanishes on cones/cylinders

Problem Statement

Background: Surface Curvature

Mean curvature / bending energy vanishes on minimal surfaces

Total curvature is the winner, as it only vanishes on planes!

Previous Methods

Standard procedure for total curvature estimation......

1. (Fit a continuous surface.)
2. Estimate the shape operator.
3. Carry out eigen decomposition of the shape operator.
4. Take the sum of square

Previous Methods

Triangle Meshes

[Taubin 1995]

Taubin Matrix (a 3×3 matrix)

$$
M_{p}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \kappa_{\theta} \vec{t}_{\theta} \vec{t}_{\theta}^{T} d \theta
$$

> But we don't pre-know the normal curvatures. There is no way to accurately calculate the Taubin Matrix. Estimating the matrix is nontrivial and introduces errors.

Taubin's Observations:

Eigenvectors of the matrix are $\begin{array}{llll}\vec{n} & \overrightarrow{t_{1}} & \overrightarrow{t_{2}}\end{array}$ Eigenvalues of the matrix are

$$
\frac{3}{8} \kappa_{\min }+\frac{1}{8} \kappa_{\max } \quad \frac{1}{8} \kappa_{\min }+\frac{3}{8} \kappa_{\max }
$$

Previous Methods

Point Clouds

Using Covariance Matrix

For each sample in the point set:

- Find it's KNN
- Calculate the covariance matrix
- Perform PCA to the covariance matrix
- Normalize the eigenvalues
- if your samples are regularly distributed

x
if your samples irregularly distributed

```
def compute_curvature(pcd, radius=0.5):
    points = np.asarray(pcd.points)
    from scipy.spatial import KDTree
    tree = KDTree(points)
    curvature = [ 0 ] * points.shape[0]
    for index, point in enumerate(points):
        indices = tree.query_ball_point(point, radius)
        # local covariance
        M = np.array([ points[i] for i in indices ]).T
        M = np.cov(M)
        # eigen decomposition
        V, E = np.linalg.eig(M)
        # h3 < h2 < h1
        h1, h2, h3 = V
    <urvature[index] = h3 / (h1 +h2 + h3),
return curvature
```


Previous Methods

Previous methods are less desirable......

- Estimating the shape operator is error-prone.
- Normalization is non-trivial.

Our objective is simpler......

- Our goal is simpler, just the total curvature.
- We don't really need to know the exact values of the principal curvatures.

Our Method

$\kappa_{T}=\int_{T}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) d p-$

$$
\kappa_{T}=\int_{T}\|d N\|^{2}
$$

Our Method

Curvature can be considered as how quickly does the surface norma change.

In mathematics, Dirichlet energy is a measure of how variable a function is.

$$
\kappa_{T}=\int_{T}\|\nabla N\|^{2} \quad \text { Dirichlet energy of Gauss Map }
$$

Our Method

$$
\kappa_{T}=\int_{T}\|\nabla N\|^{2} \quad \text { Dirichlet energy of Gauss Map }
$$

We love Dirichlet energy here. Because we know exactly how to calculate it, and that would be with the stiffness matrix (cotangent Laplacian).

$$
\kappa_{T}=\operatorname{trace}\left(N^{T} \cdot S \cdot N\right)
$$

$$
\kappa_{T}=\operatorname{trace}\left(N \cdot S \cdot N^{T}\right)
$$

The estimation of discrete total curvature boils down to two questions:

- How to calculate the Laplacian?
- How to estimate the normal?

Performance

Performance

RMSE between ground truth and estimation of total curvature on regular triangulations of the sphere and torus at different resolutions.

resolution	Libigl [Panozzo et al. 2010]	Meshlab [Taubin 1995]	Trimesh2 [Rusinkiewicz 2004]	Ours
icosahedron-subdivided spheres				
4-subdivision	0.1104	0.0308	0.0155	$\mathbf{0 . 0 0 0 0}$
5-subdivision	0.0271	0.0353	0.0155	$\mathbf{0 . 0 0 0 0}$
6-subdivision	0.0067	0.0382	0.0155	$\mathbf{0 . 0 0 0 0}$
	polyhedral torus			
9×9 grid	19.2708	2.5869	1.6643	$\mathbf{0 . 4 7 5 9}$
18 x 18 grid	3.5917	2.6976	1.1838	$\mathbf{0 . 1 4 2 5}$
36×36 grid	1.28	2.7072	1.0621	$\mathbf{0 . 0 3 7 2}$

Performance
feature-preserving mesh decimation

Applications

feature-preserving mesh decimation

using libigl curvature

Performance

feature-preserving mesh decimation

Hausdorff distance between feature-aware decimated mesh and the original mesh for the bunny (top), cow (middle), and armadillo man (bottom) models.

metric	Libigl [Panozzo et al. 2010]	Meshlab [Taubin 1995]	Trimesh2 [Rusinkiewicz 2004]	Ours
RMS	0.0066	0.0062	0.0056	$\mathbf{0 . 0 0 5 4}$
Max	0.0542	0.0608	0.0533	$\mathbf{0 . 0 3 8 5}$
RMS	0.0073	0.0071	0.0085	$\mathbf{0 . 0 0 6 9}$
Max	0.0731	0.0427	0.0459	$\mathbf{0 . 0 3 8 5}$
RMS	0.0031	$\mathbf{0 . 0 0 2 7}$	0.0031	$\mathbf{0 . 0 0 2 7}$
Max	0.0370	0.0233	0.0324	$\mathbf{0 . 0 1 7 4}$

Performance

Aforementioned experiments are handling triangle meshes

To handle point clouds,

- We use Open3D to calculate the normals of the point cloud.
- We use [Belkin et. al. 2009] to calculate the Laplacian

It should be noted that, local triangulation is enough for our total curvature-estimation algorithm.

Hoppe, Hugues, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. "Surface reconstruction from unorganized points." In Proceedings of the 19th annual conference on computer graphics and interactive techniques, pp. 71-78. 1992.

Performance

Performance

RMSE between ground truth curvature and estimated curvature on point clouds for the knot (top) and torus (bottom) models.

sampling	PCL	CGAL [Mérigot et al. 2010]	Ours (N est.)	Ours $(\mathrm{N} \mathrm{gt})$
uniform	292.8847	342.6716	237.3573	$\mathbf{1 9 7 . 5 9 1 2}$
nonuniform	309.8654	345.6605	295.0542	$\mathbf{2 2 1 . 0 4 4 7}$
sparse	387.7908	438.9999	$\mathbf{3 1 5 . 5 9 4 3}$	315.7218
uniform	1.4364	1.9893	0.8138	$\mathbf{0 . 0 2 1 9}$
nonuniform	1.5057	2.0118	1.3447	$\mathbf{0 . 0 3 6 7}$
sparse	1.5792	2.4791	0.6501	$\mathbf{0 . 0 5 4 8}$

Performance

high curvature
low
curvature

ground truth

curvature
low
curvature

PCL

CGAL

CGAL

ours

23

Applications

feature-preserving mesh decimation

Applications

feature-preserving surface reconstruction

ground truth

Screened PoissonRecon

Screened PoissonRecon with curvature-modulated weights

Applications

feature-preserving surface reconstruction
Screened PoissonRecon
Input: oriented point cloud
Output: watertight surface
The energy:

$$
E(\chi)=\underbrace{\int\|\vec{V}(p)-\nabla \chi(p)\|^{2} d p}_{\text {normal/gradient fit }}+\underbrace{w_{1} \chi \chi(p)^{2}}_{\text {value fit }}
$$

Applications

feature-preserving point cloud simplification

all the points

10 percent of the points

3 percent of the points

Challenges \& Opportunities

skinny triangles

before edge flipping

after edge flipping

before edge flipping

after edge flipping

Challenges \& Opportunities

skinny triangles

mesh	min	max	RMSE
sphere (estimated normal)			
before edge flipping after edge flipping	1.148	108.992	10.025
sphere (ground truth normal)			
before edge flipping	2.000	2.000	0.000
after edge flipping	2.000	2.000	0.000
torus (estimated normal)			
before edge flipping	0.813	510.986	62.996
after edge flipping	1.978	423.171	49.722
torus (ground truth normal)			
before edge flipping	2.592	2.592	0.832
after edge flipping	8.724	8.724	0.754

Summary

A simple method

construct Taubin matrix	eigen decomposition	derive principal curvatures from eigenvalues	calculate total curvature

Meshlab

Can calculate total curvature for both triangle meshes and point clouds
Can benefit multiple applications, including decimation and reconstruction

Software

libıg - style source code

Dependencies:


```
f (format == "mesh"){
igl::total_curvature_mesh(V, F, N, k_S);
    VisTriangleMesh(k_S, V, F);
if (format == "point_cloud"){
    igl::total_curvature_point_cloud(V, N, k_S, 20);
    VisPointCloud(k_S, V);
```

Compilation verified on:

〈) - style source code

QPEN3ロ
Dependencies:


```
// calculate total curvature on triangle mesh
open3d::geometry::TotalCurvature::TotalCurvatureMesh(V, F, N, k_S);
```

/ calculate total curvature on point cloud
open3d: :geometry: :TotalCurvaturePointCloud: :TotalCurvaturePCD(V_PCD, N_PCD, k_S_PCD, 20);

Thank You!

