Estimating Discrete Total Curvature with Per Triangle Normal Variation

Crane He Chen

Week9

The Johns Hopkins University

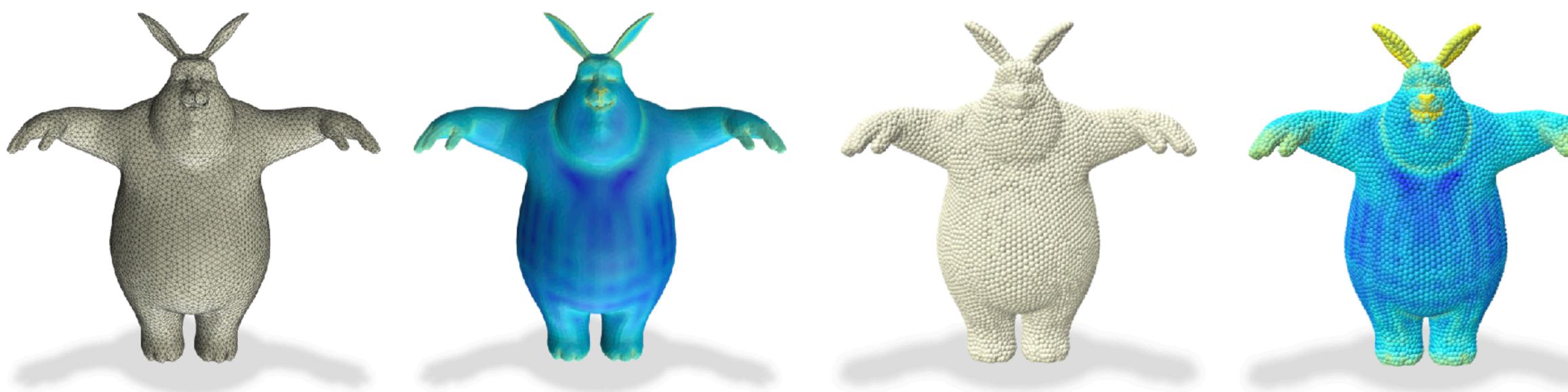
Administration

Next week's meeting time

A method for computing total curvature of triangle meshes or point clouds while avoiding the calculation of the shape operator

The Output

How the calculation works



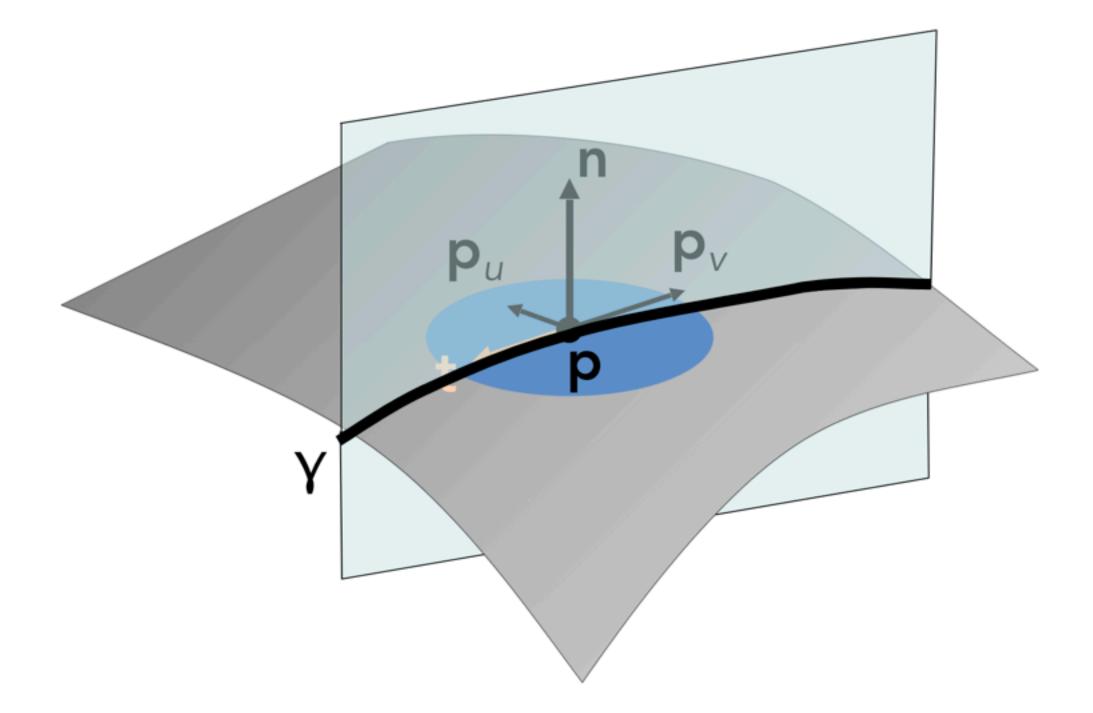
input (triangle mesh)

output (total curvature)

input (point cloud)

output (total curvature)

Background: Surface Curvature



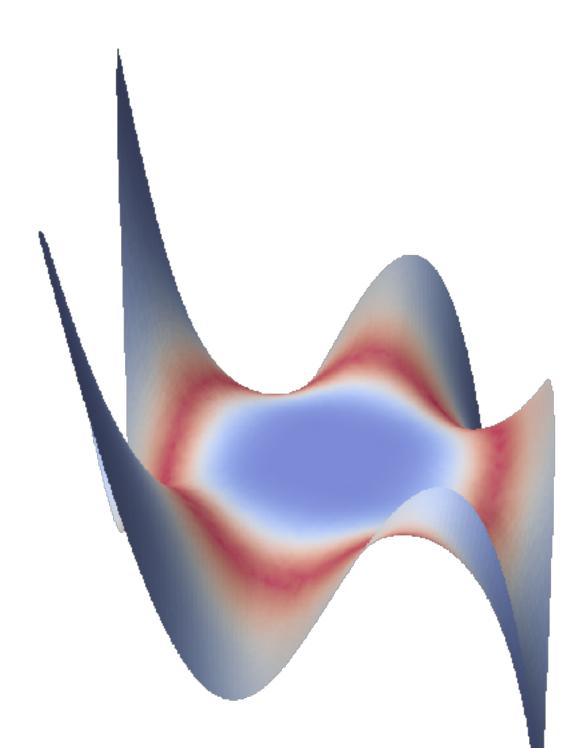
* figure of normal curvature stolen from NYU lecture slides (Daniele's GP course)

Minimal Curvature

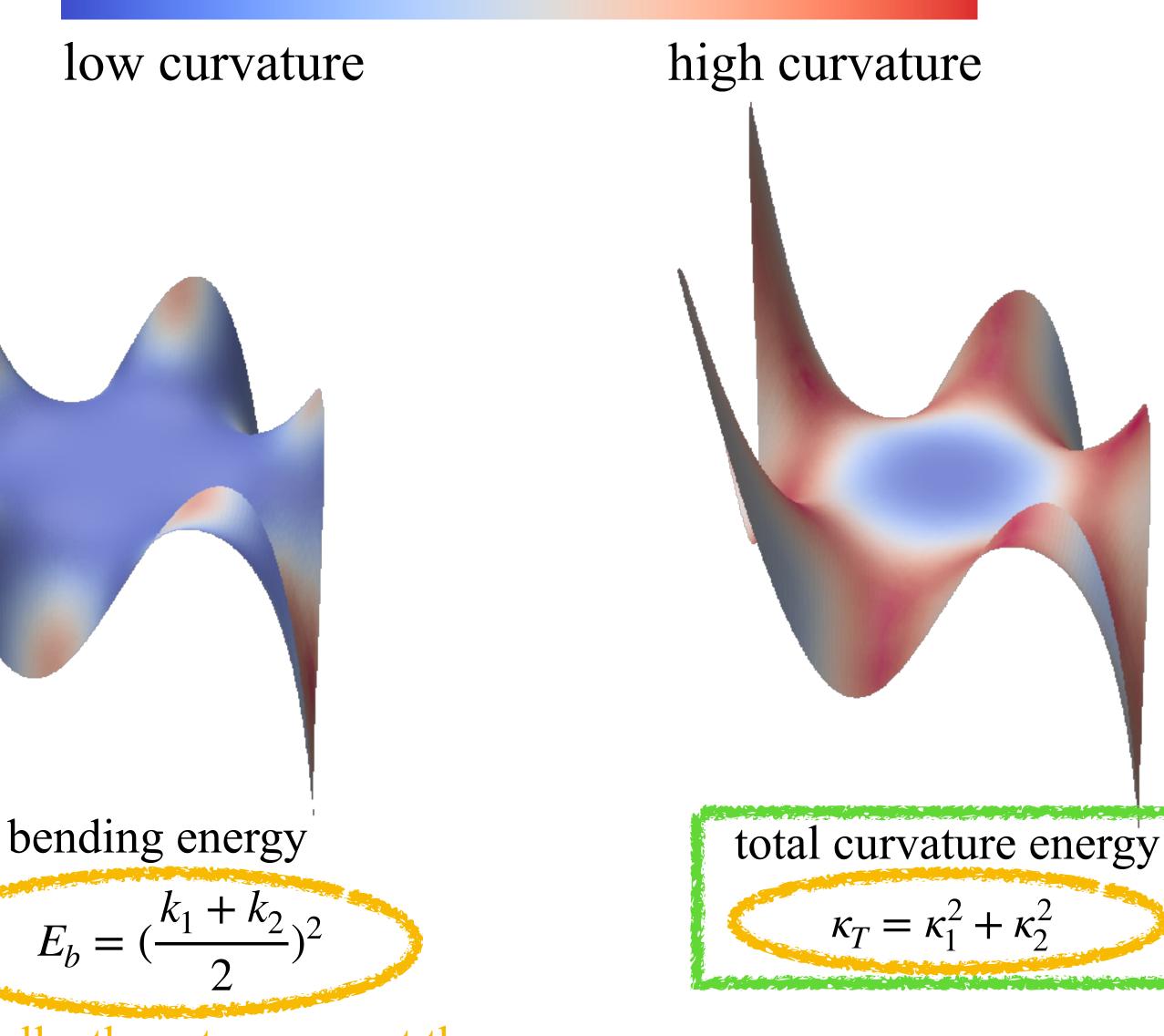
$$\kappa_1 = \kappa_{min} = \min_{\phi} \kappa_n(\phi)$$
$$\kappa_2 = \kappa_{max} = \max_{\phi} \kappa_n(\phi)$$

Maximal Curvature

Background: Surface Curvature

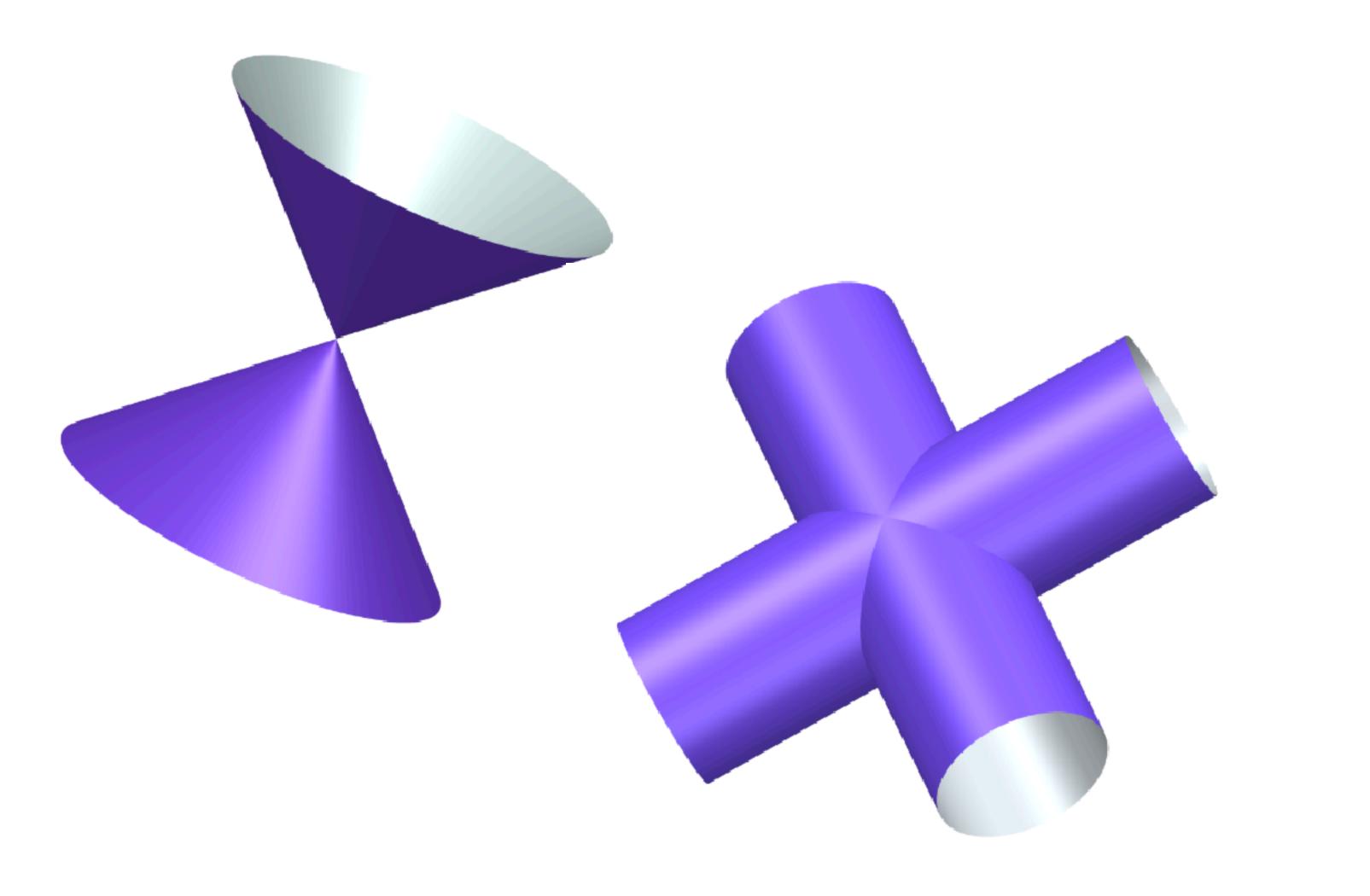


Gaussian curvature energy $abs(K) = \|\kappa_1 \cdot \kappa_2\|$



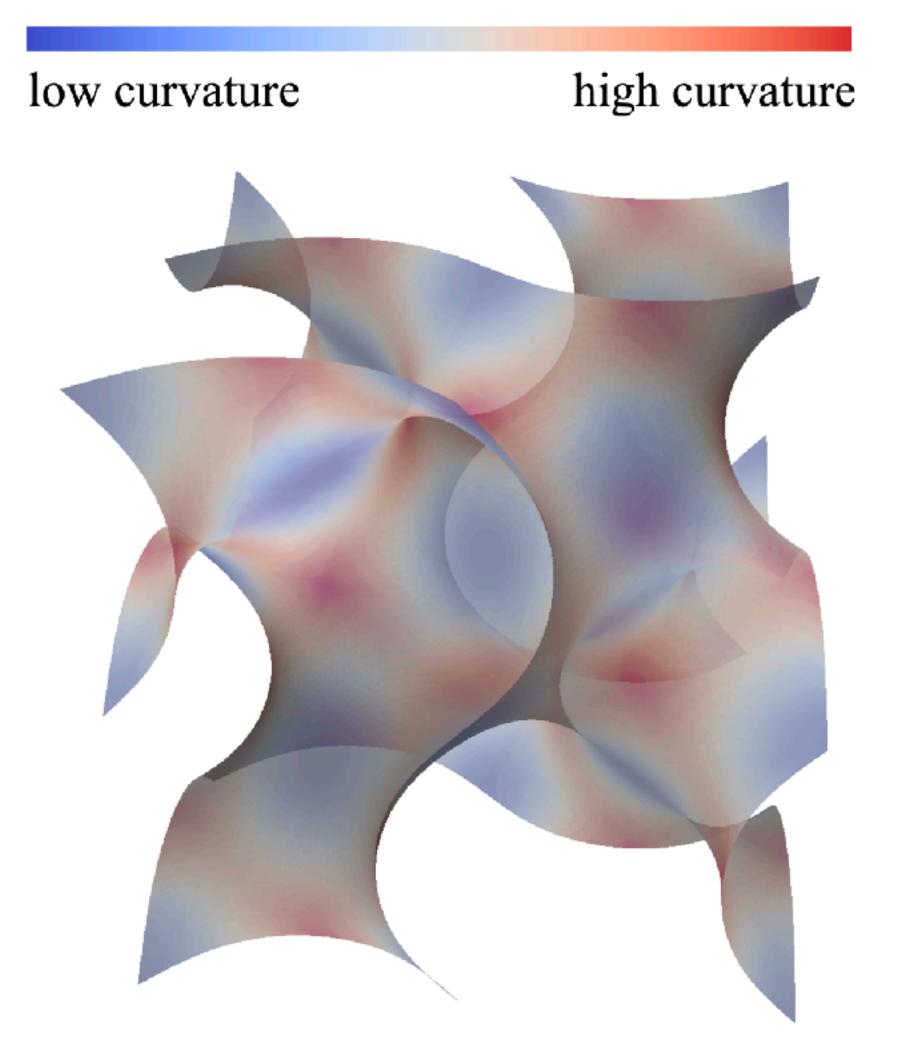
locally, these two are not the same

Background: Surface Curvature



Gaussian curvature vanishes on cones/cylinders

Background: Surface Curvature



total curvature of the Gyroid

Mean curvature / bending energy vanishes on minimal surfaces

Total curvature is the winner, as it only vanishes on planes!

Standard procedure for total curvature estimation....

- (Fit a continuous surface.) 1.
- Estimate the shape operator. 2.
- Carry out eigen decomposition of the shape operator. 3.
- 4. Take the sum of square

Previous Methods

Triangle Meshes [Taubin 1995]

Taubin Matrix (a 3x3 matrix)

$$M_{p} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \kappa_{\theta} \vec{t}_{\theta} \vec{t}_{\theta}^{T} d\theta$$

But we don't pre-know the normal curvatures. There is no way to accurately calculate the Taubin Matrix. Estimating the matrix is nontrivial and introduces errors.

Taubin's Observations:

Eigenvectors of the matrix are $\vec{n} \quad \vec{t_1} \quad \vec{t_2}$ Eigenvalues of the matrix are

Previous Methods

Point Clouds

Using Covariance Matrix

For each sample in the point set:

- Find it's KNN
- Calculate the covariance matrix
- Perform PCA to the covariance matrix
- Normalize the eigenvalues

if your samples are regularly distributed if your samples irregularly distributed

```
def compute_curvature(pcd, radius=0.5):
   points = np.asarray(pcd.points)
    from scipy.spatial import KDTree
   tree = KDTree(points)
   curvature = [ 0 ] * points.shape[0]
    for index, point in enumerate(points):
        indices = tree.query_ball_point(point, radius)
        # local covariance
        M = np.array([ points[i] for i in indices ]).T
       M = np.cov(M)
        # eigen decomposition
        V, E = np.linalg.eig(M)
       # h3 < h2 < h1
        h1, h2, h3 = V
       curvature[index] = h3 / (h1 + h2 + h3)
    return curvature
```


Previous Methods

Previous methods are less desirable.....

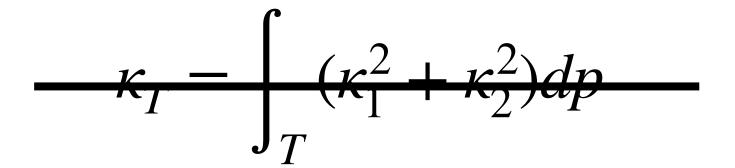
- Estimating the shape operator is error-prone.
- Normalization is non-trivial.

Our objective is simpler.....

- Our goal is simpler, just the total curvature.

We don't really need to know the exact values of the principal curvatures.

Our Method



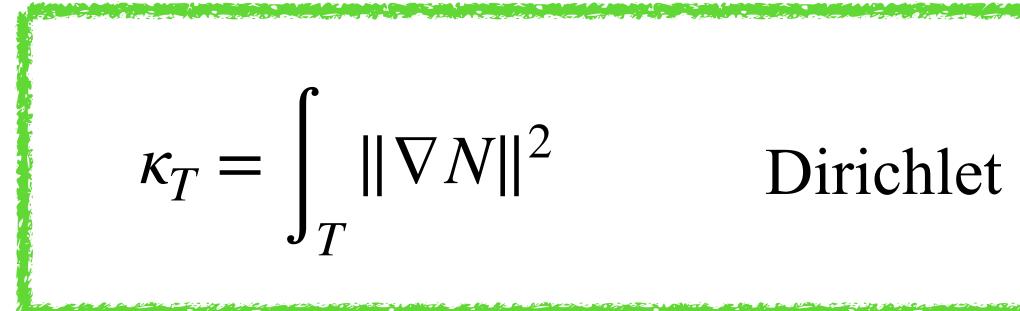
$$\kappa_T = \int_T \|dN\|^2$$

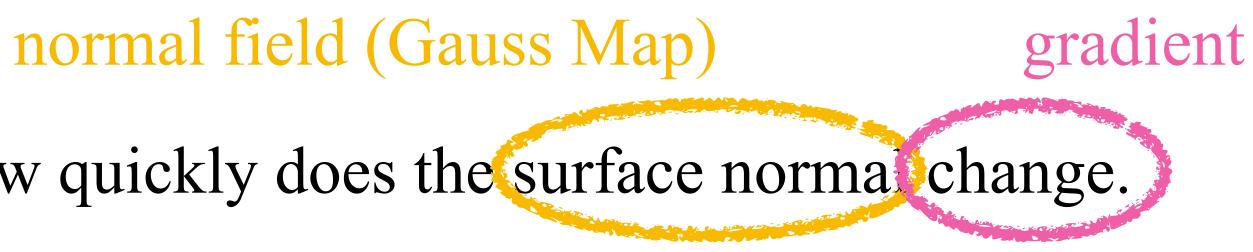
11

Our Method

Curvature can be considered as how quickly does the surface normal change.

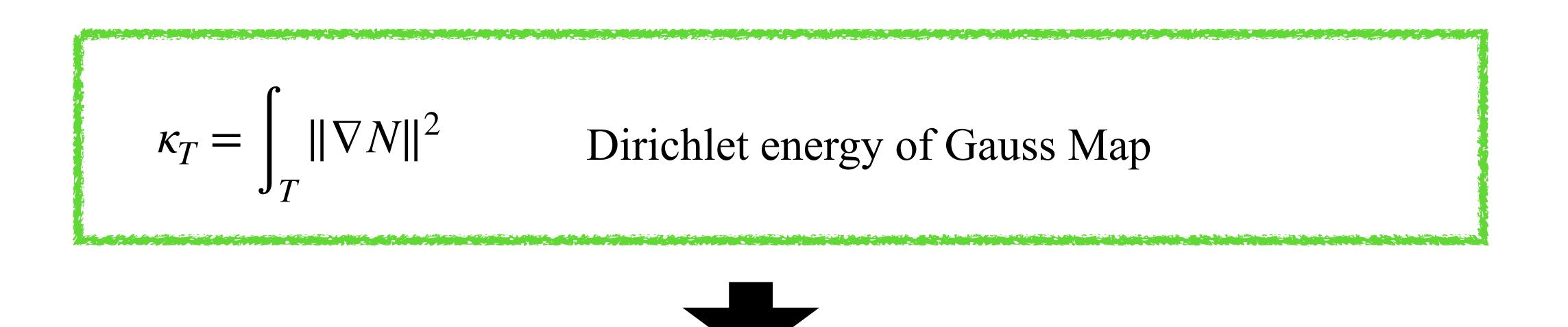
In mathematics, Dirichlet energy is a measure of how variable a function is.





Dirichlet energy of Gauss Map

Our Method



it, and that would be with the stiffness matrix (cotangent Laplacian).

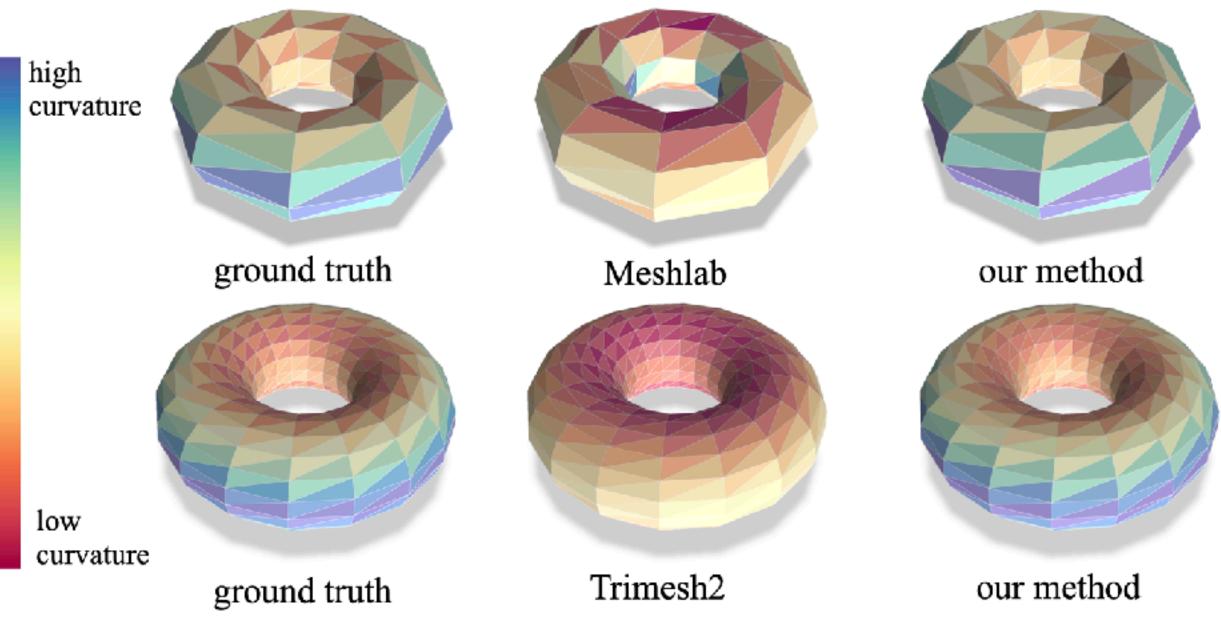
- We love Dirichlet energy here. Because we know exactly how to calculate
 - $\kappa_T = trace(N^T \cdot S \cdot N)$

$\kappa_T = trace(N \cdot S \cdot N^T)$

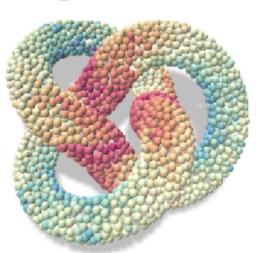
The estimation of discrete total curvature boils down to two questions:

How to calculate the Laplacian?

How to estimate the normal?

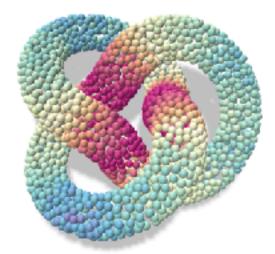


ground truth



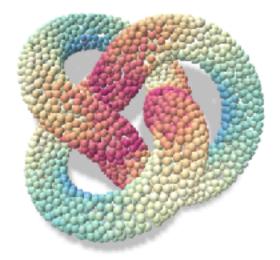
ground truth

PCL

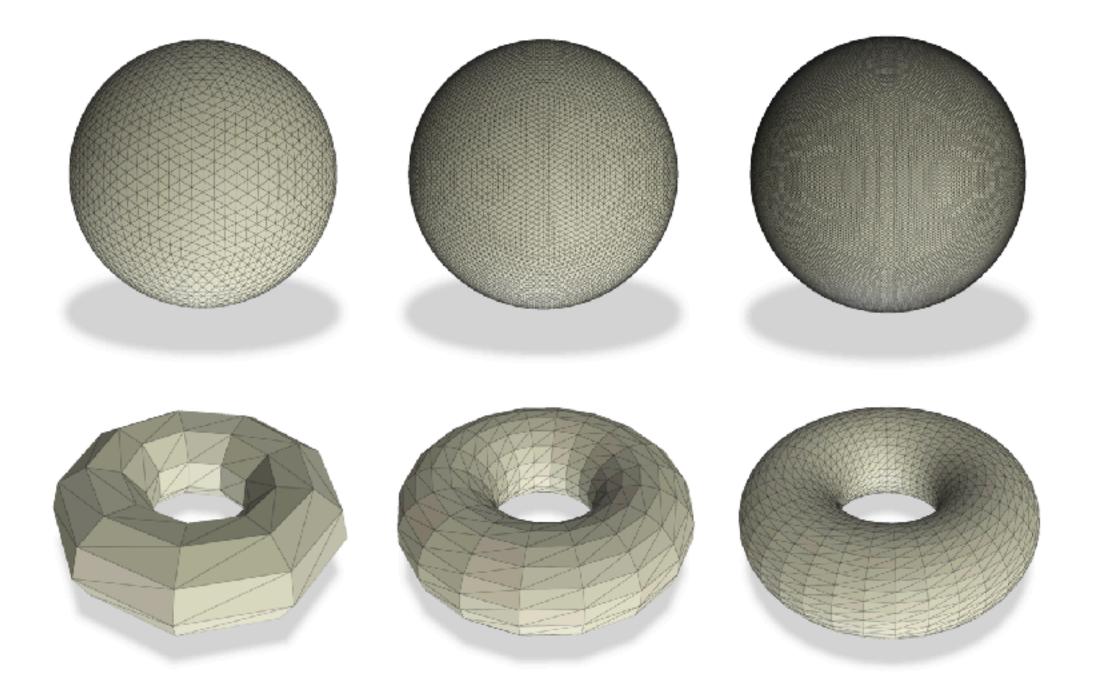


CGAL

our method

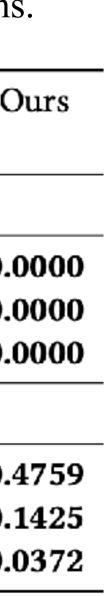


our method

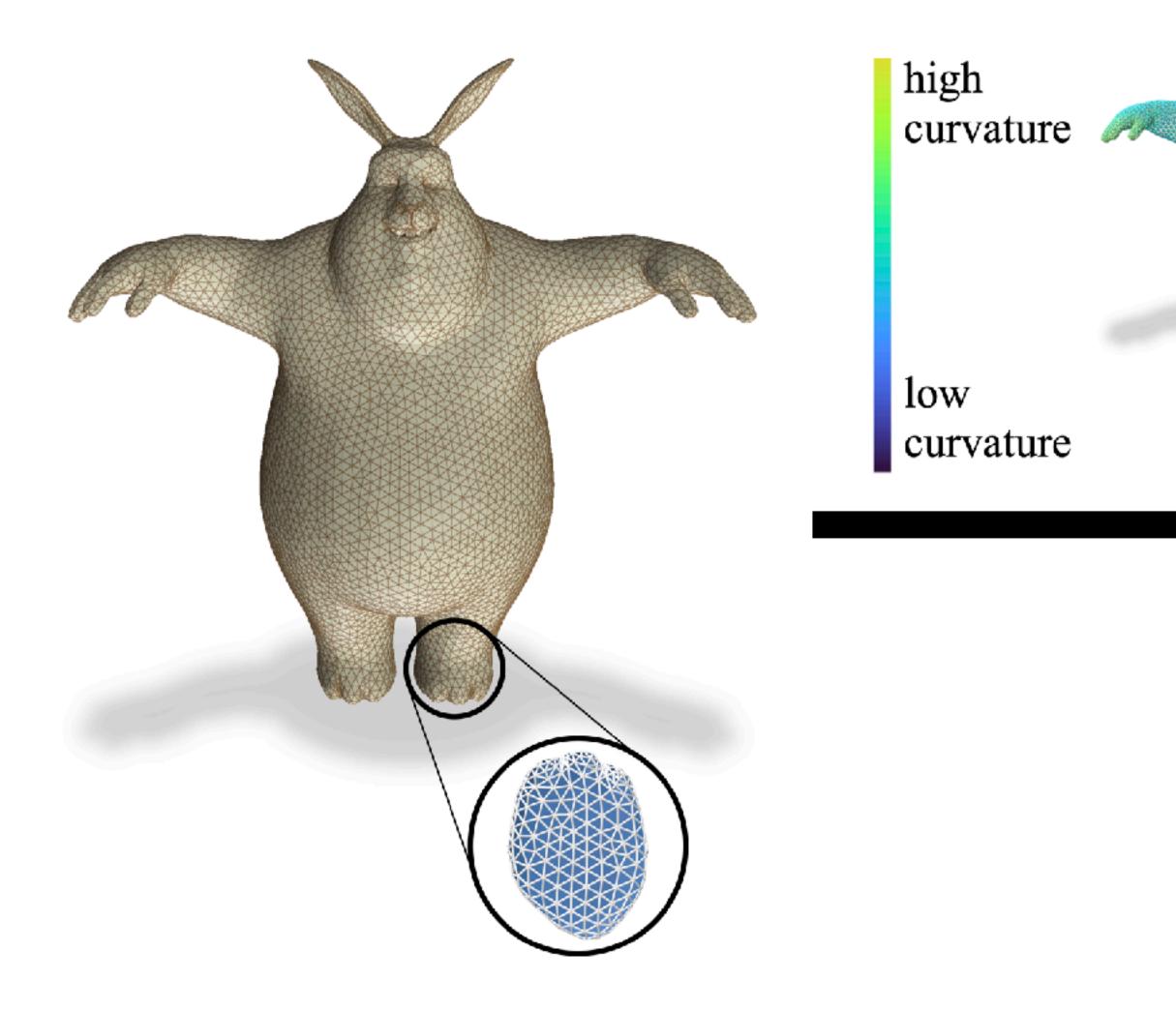


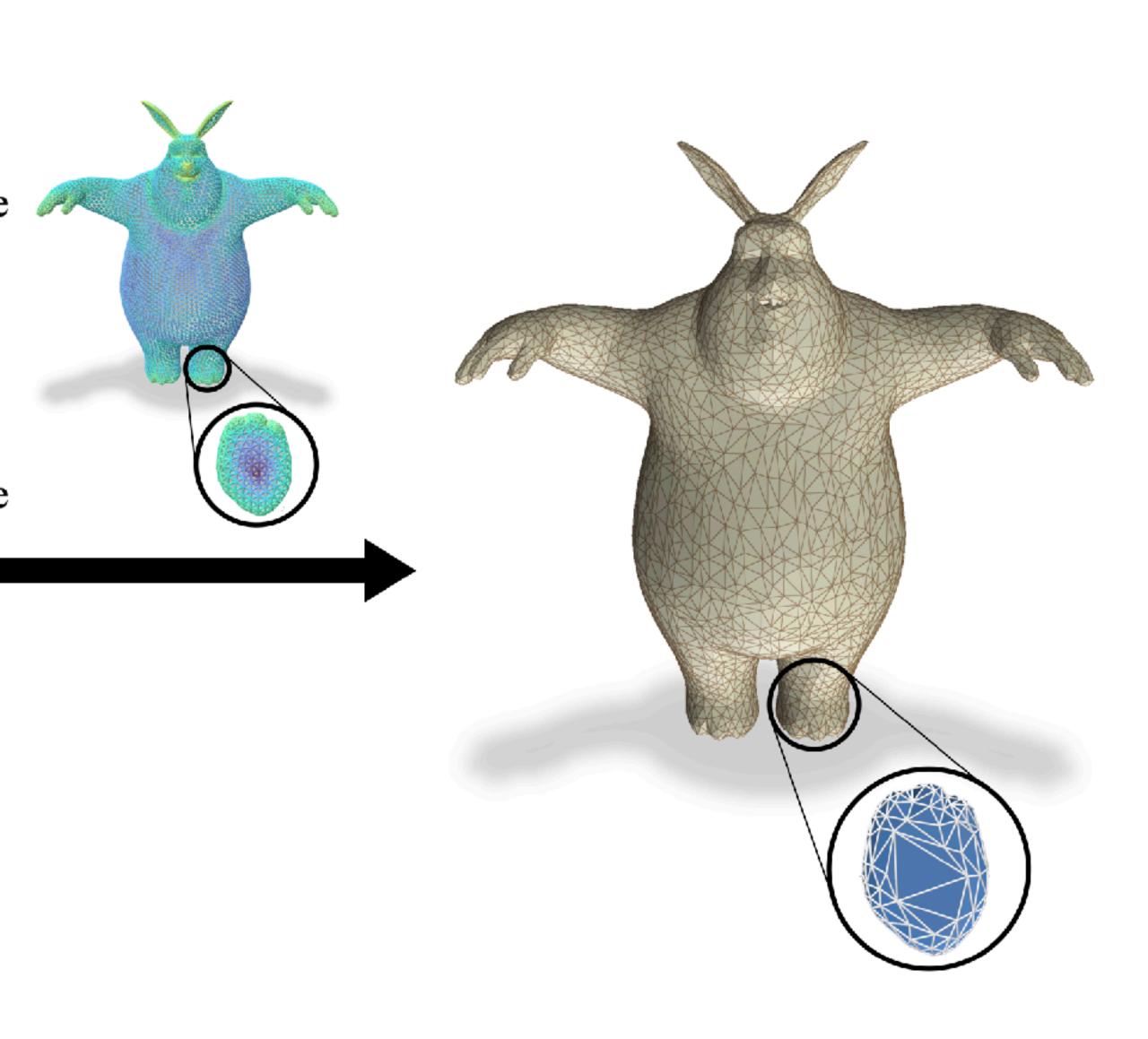
RMSE between ground truth and estimation of total curvature on regular triangulations of the sphere and torus at different resolutions.

resolution	Libigl [Panozzo et al. 2010]	Meshlab [Taubin 1995]	Trimesh2 [Rusinkiewicz 2004]	0	
icosahedron-subdivided spheres					
4-subdivision	0.1104	0.0308	0.0155	0.0	
5-subdivision	0.0271	0.0353	0.0155	0.0	
6-subdivision	0.0067	0.0382	0.0155	0.0	
	pol	yhedral torus			
9 x 9 grid	19.2708	2.5869	1.6643	0. 4	
18 x 18 grid	3.5917	2.6976	1.1838	0.1	
36 x 36 grid	1.28	2.7072	1.0621	0.0	



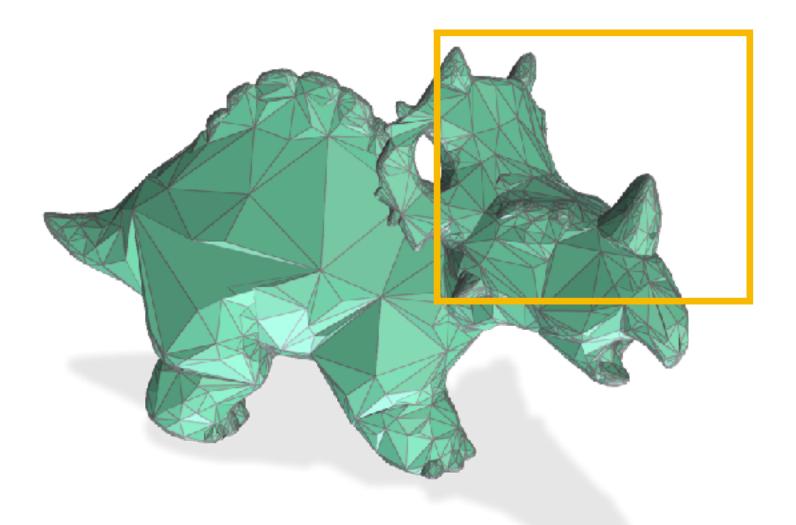
feature-preserving mesh decimation





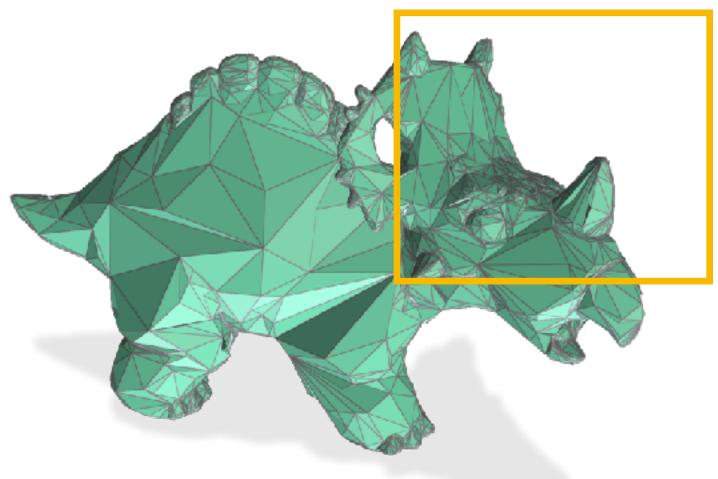
feature-preserving mesh decimation





using libigl curvature

tion



using our curvature

feature-preserving mesh decimation

Hausdorff distance between feature-aware decimated mesh and the original mesh for the bunny (top), cow (middle), and armadillo man (bottom) models.

metric	Libigl [Panozzo et al. 2010]	Meshlab [Taubin 1995]	Trimesh2 [Rusinkiewicz 2004]	Ours
RMS	0.0066	0.0062	0.0056	0.0054
Max	0.0542	0.0608	0.0533	0.0385
RMS	0.0073	0.0071	0.0085	0.0069
Max	0.0731	0.0427	0.0459	0.0385
RMS	0.0031	0.0027	0.0031	0.0027
Max	0.0370	0.0233	0.0324	0.0174

Aforementioned experiments are handling triangle meshes

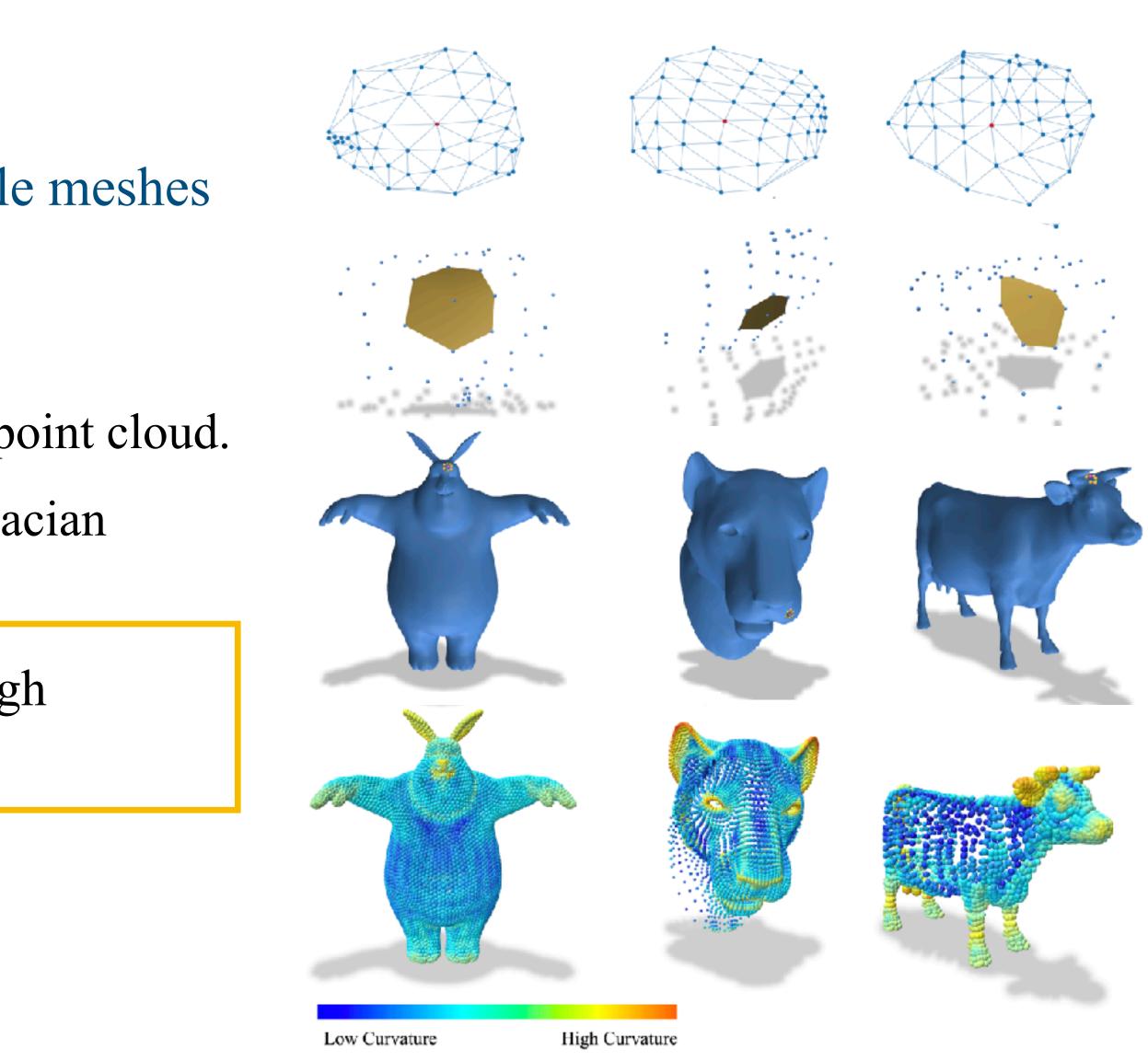
To handle point clouds,

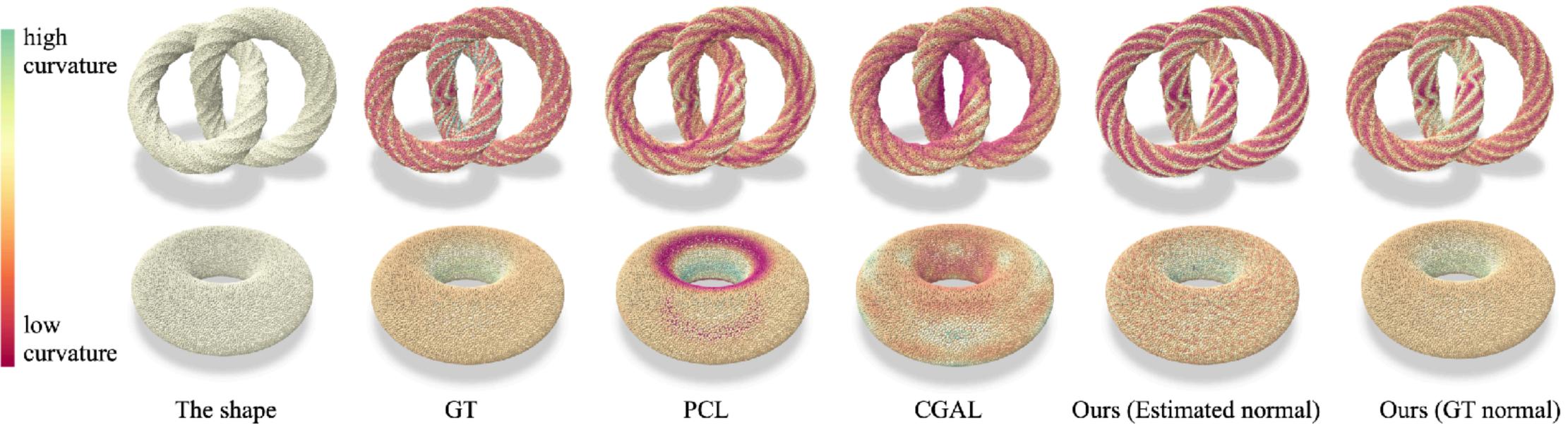
- We use Open3D to calculate the normals of the point cloud.
- We use [Belkin et. al. 2009] to calculate the Laplacian

It should be noted that, local triangulation is enough for our total curvature-estimation algorithm.

Hoppe, Hugues, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. "Surface reconstruction from unorganized points." In Proceedings of the 19th annual conference on computer graphics and interactive techniques, pp. 71-78. 1992.

Metzer, Gal, Rana Hanocka, Denis Zorin, Raja Giryes, Daniele Panozzo, and Daniel Cohen-Or. "Orienting point clouds with dipole propagation." ACM Transactions on Graphics (TOG) 40, no. 4 (2021): 1-14.

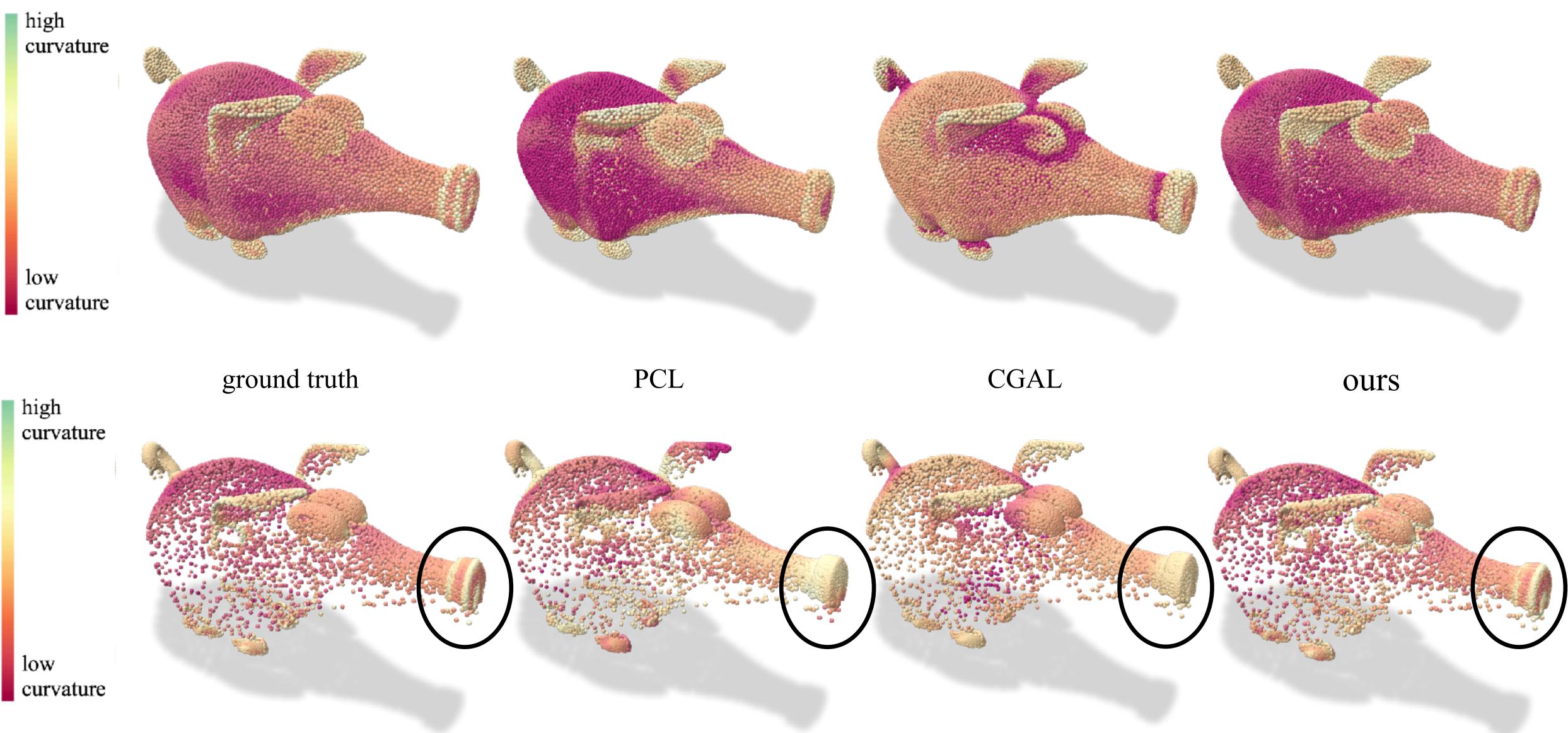




the knot (top) and torus (bottom) models.

sampling	PCL	CGAL [Mérigot et al. 2010]	Ours (N est.)	Ours (N gt)
uniform	292.8847	342.6716	237.3573	197.5912
nonuniform	309.8654	345.6605	295.0542	221.0447
sparse	387.7908	438.9999	315.5943	315.7218
uniform	1.4364	1.9893	0.8138	0.0219
nonuniform	1.5057	2.0118	1.3447	0.0367
sparse	1.5792	2.4791	0.6501	0.0548

RMSE between ground truth curvature and estimated curvature on point clouds for

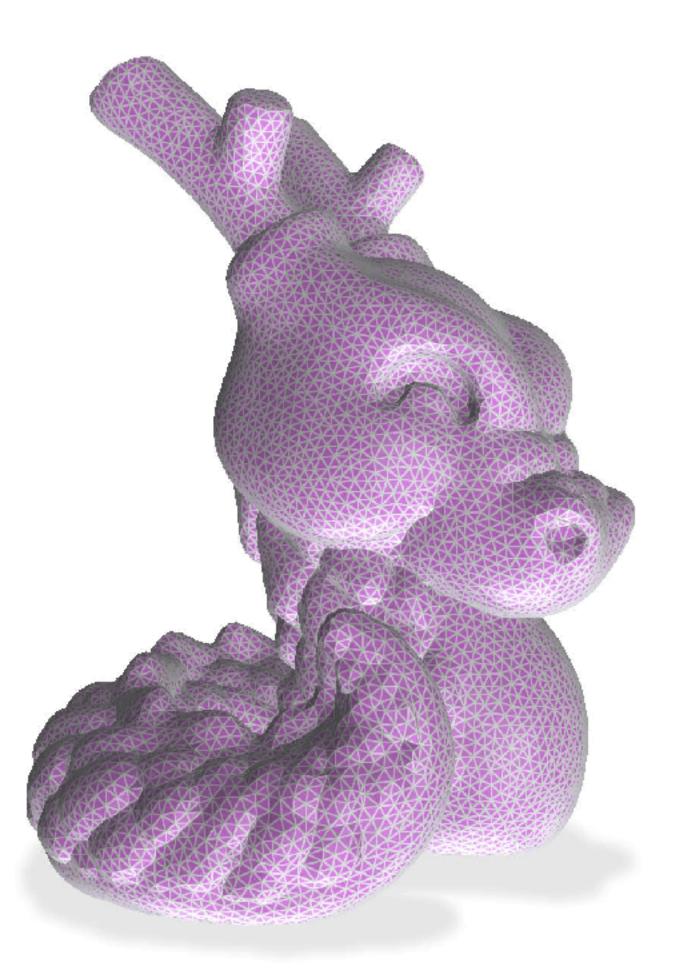


ground truth

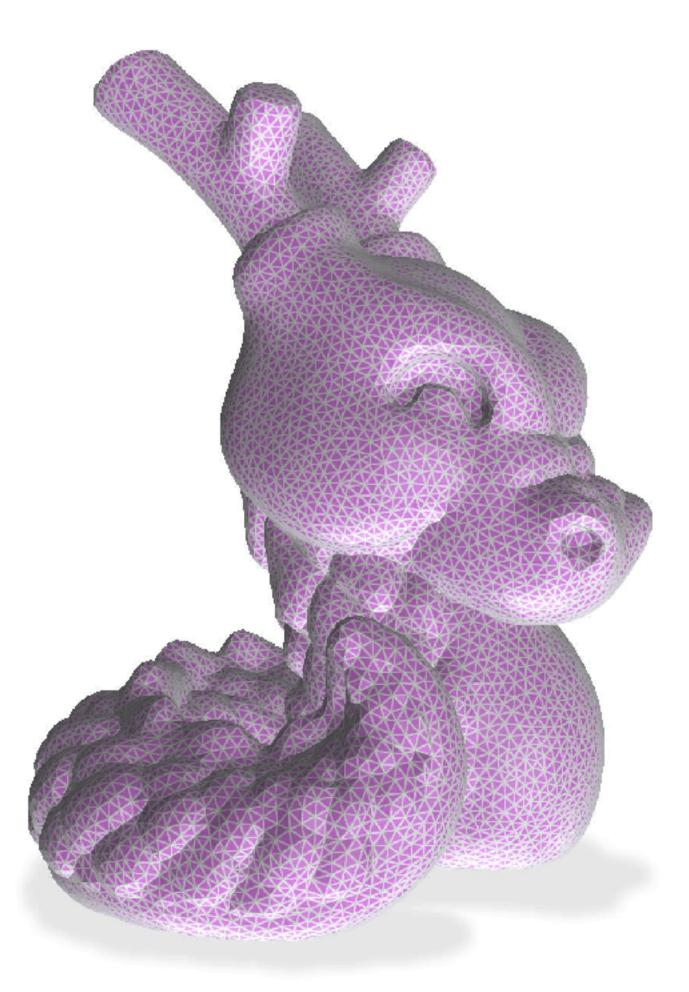
CGAL

ours

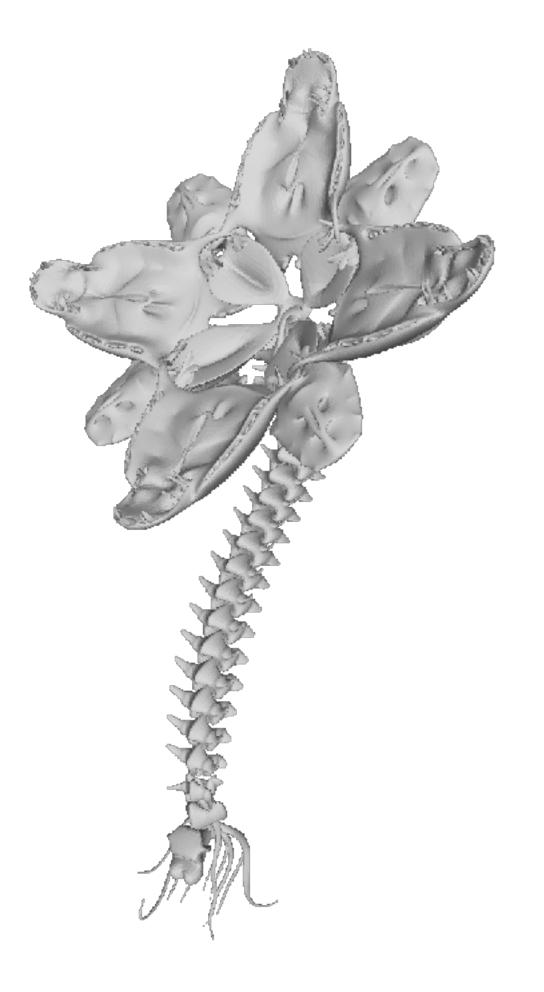
feature-preserving mesh decimation



tion

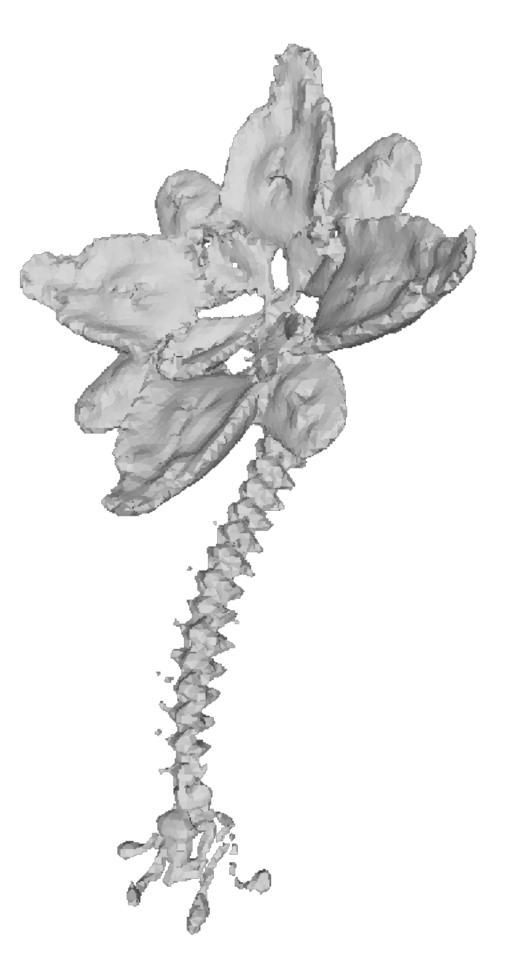


feature-preserving surface reconstruction



Screened PoissonRecon

ground truth



Screened PoissonRecon with curvature-modulated weights

feature-preserving surface reconstruction

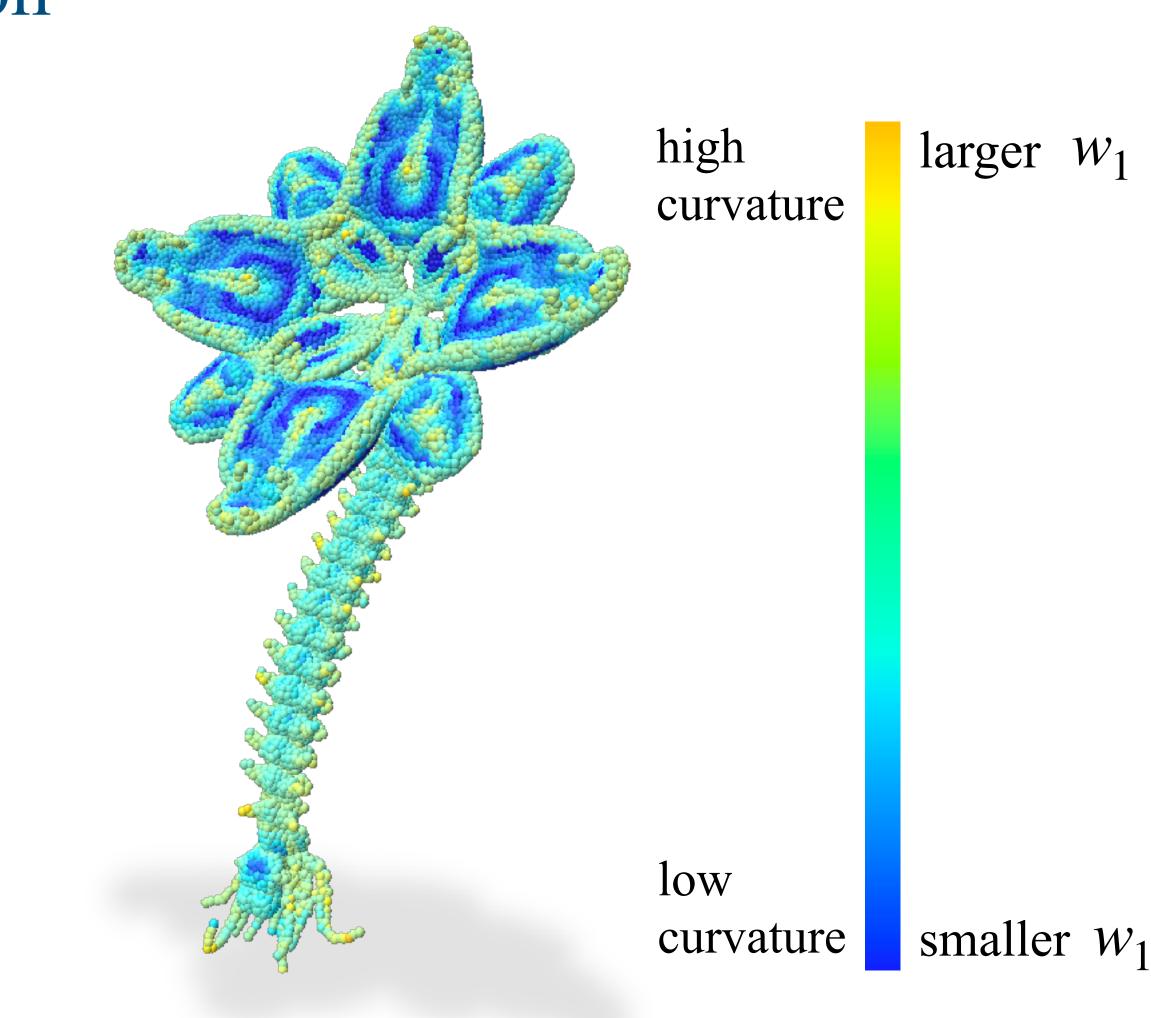
Screened PoissonRecon

Input: oriented point cloud

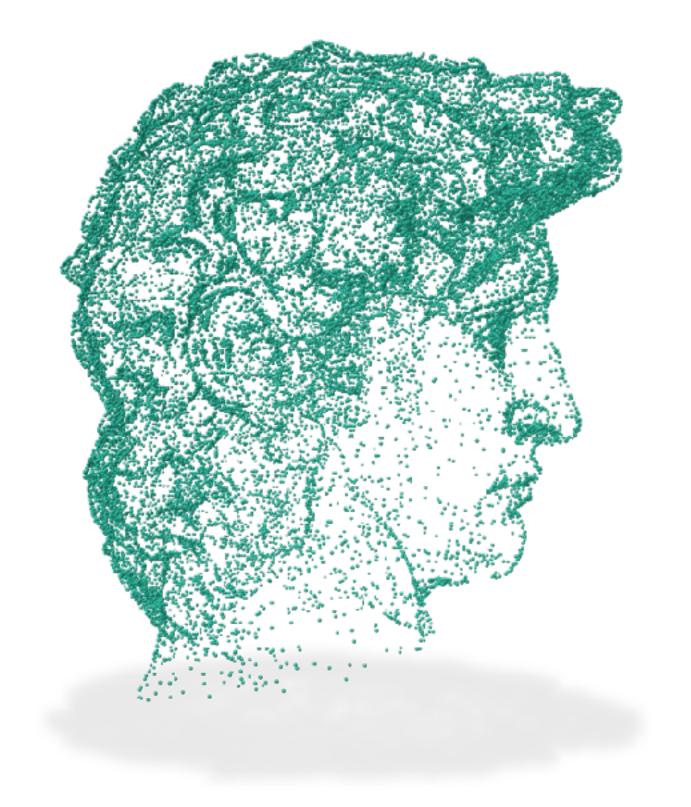
Output: watertight surface

The energy: $E(\chi) = \int \|\vec{V}(p) - \nabla \chi(p)\|^2 dp + w_1 \sum_{p \in P} \chi(p)^2$ normal/gradient fit value fit

action



feature-preserving point cloud simplification



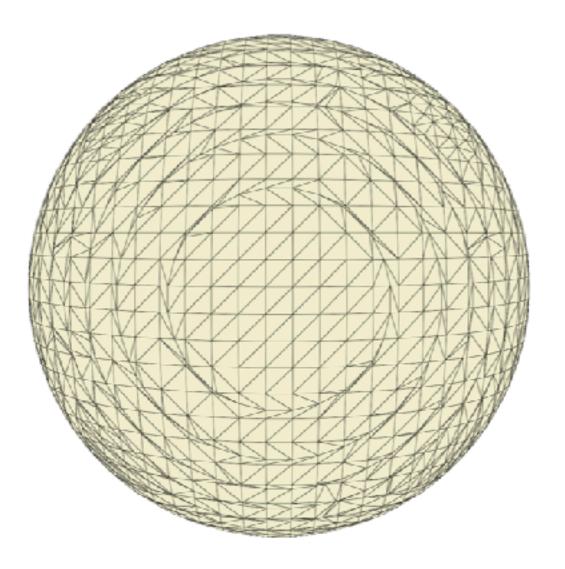
all the points

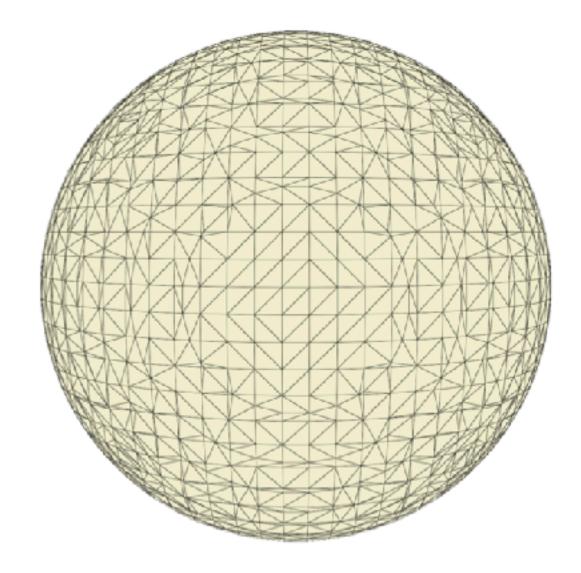
10 percent of the points

3 percent of the points

Challenges & Opportunities

skinny triangles

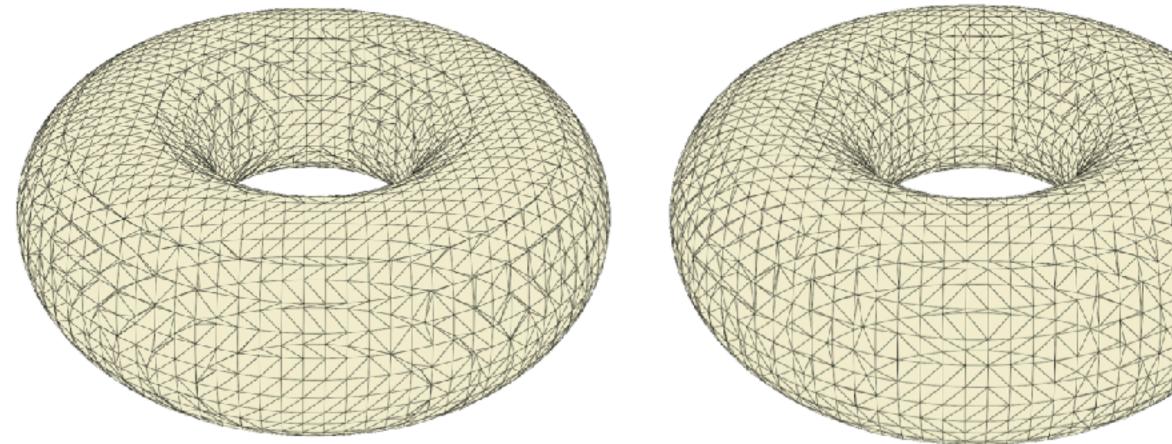




before edge flipping

after edge flipping

Sharp, Nicholas, and Keenan Crane. "A laplacian for nonmanifold triangle meshes." Computer Graphics Forum. Vol. 39. No. 5. 2020.



before edge flipping

after edge flipping

Challenges & Opportunities

skinny triangles

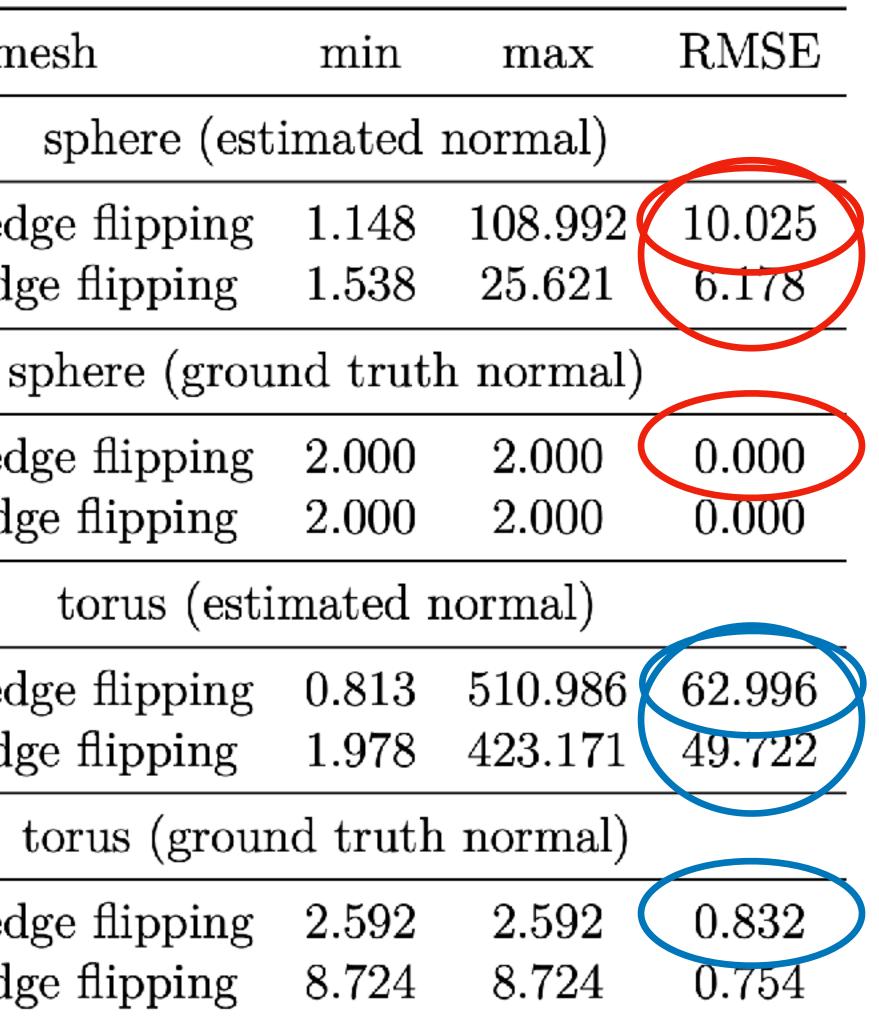
mesh

before edge flipping 1.148 after edge flipping

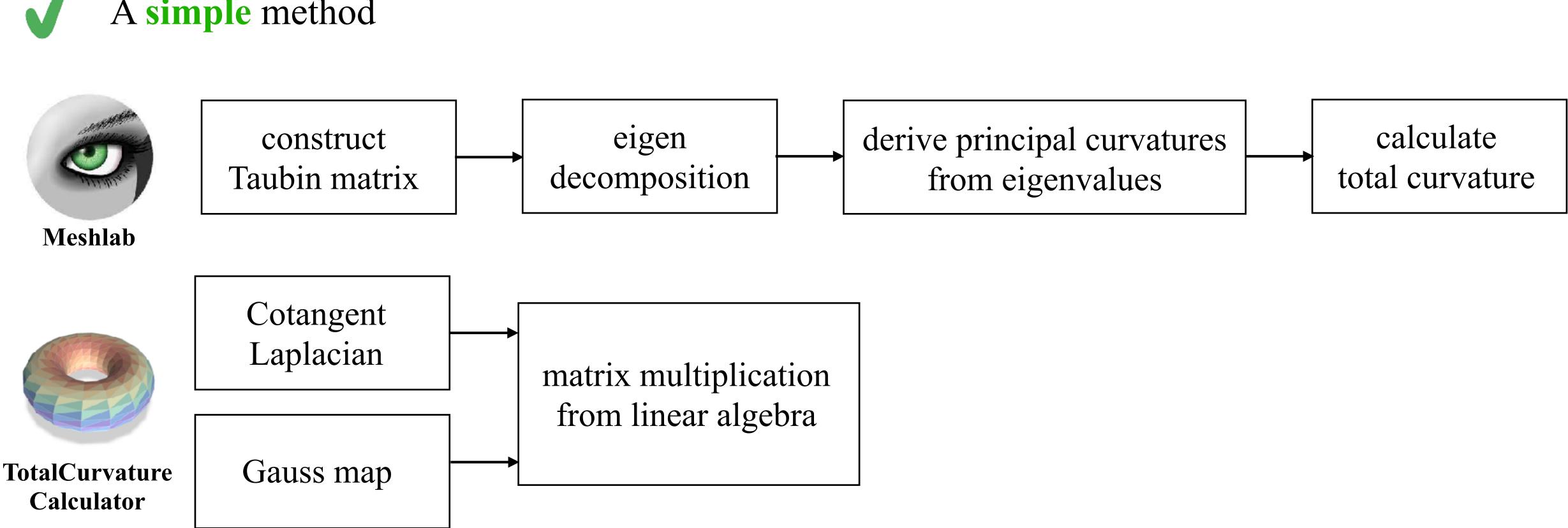
before edge flipping after edge flipping

before edge flipping 0.813 after edge flipping 1.978

before edge flipping after edge flipping



Summary



Can calculate total curvature for both triangle meshes and point clouds

Can benefit multiple applications, including decimation and reconstruction

Software

style source code

Dependencies:

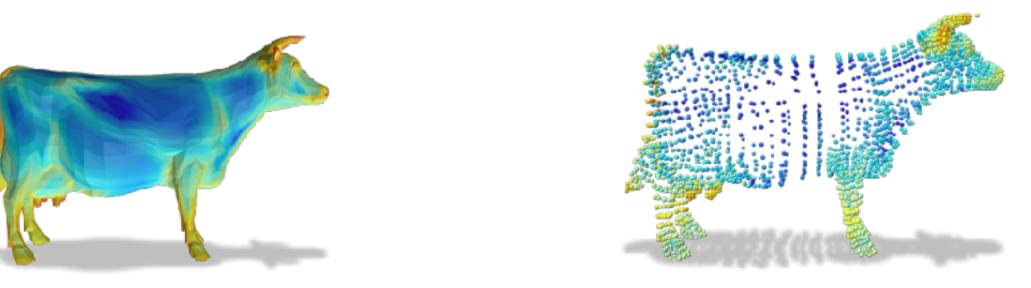
Compilation verified on:

— style source code

Dependencies:

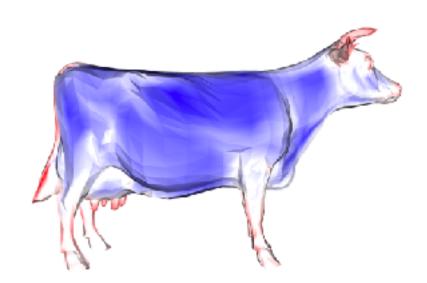
Compilation verified on:

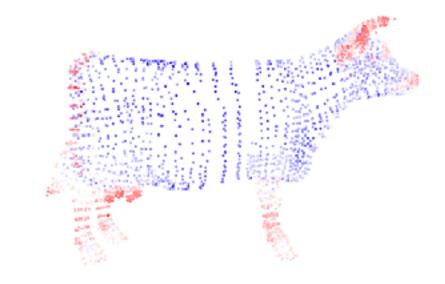

```
if (format == "mesh"){
    igl::total_curvature_mesh(V, F, N, k_S);
    VisTriangleMesh(k_S, V, F);
}
if (format == "point_cloud"){
    igl::total_curvature_point_cloud(V, N, k_S, 20);
    VisPointCloud(k_S, V);
}
```



// calculate total curvature on triangle mesh open3d::geometry::TotalCurvature::TotalCurvatureMesh(V, F, N, k_S);

// calculate total curvature on point cloud open3d::geometry::TotalCurvaturePointCloud::TotalCurvaturePCD(V_PCD, N_PCD, k_S_PCD, 20);





Thank You!