Estimating Discrete Total Curvature
with Per Triangle Normal Variation

Crane He Chen
Johns Hopkins University

Figure 1: Comparison of discrete total curvature estimation with popular libraries. Left top: per-triangle total curvature (9x9
polyhedral torus). Left bottom: per-triangle total curvature (18x18 polyhedral torus). Right top: per point curvature averaged
from total curvature (20k points). Right bottom: per point curvature averaged from total curvature (2k points)

ABSTRACT

We introduce a novel approach for measuring the total curvature
at every triangle of a discrete surface. This method takes advan-
tage of the relationship between per triangle total curvature and
the Dirichlet energy of the Gauss map. This new tool can be used
on both triangle meshes and point clouds and has numerous ap-
plications. In this study, we demonstrate the effectiveness of our
technique by using it for feature-aware mesh decimation, and show
that it outperforms existing curvature-estimation methods from
popular libraries such as Meshlab, Trimesh2, and Libigl. When esti-
mating curvature on point clouds, our method outperforms popular
libraries PCL and CGAL.

1 INTRODUCTION

Curvature is an essential differential property in many geometry
processing applications. In some cases, an algorithm requires the di-
rections and values of principal curvatures. This is usually achieved
by estimating a symmetric tensor approximating the shape operator.
Computing the eigen-decomposition of the tensor, one obtains the
principal curvature directions (the eigenvectors) and the principal
curvature values (the eigenvalues). Then, curvature energies (e.g.
mean, Gaussian, and total curvature) can be defined based on the
estimated principal curvatures [Wardetzky et al. 2007]. We propose
an alternative for directly estimating the total curvature K% + Kg by
integrating the variation of normal vectors, bypassing the problem
of explicitly estimating the shape operator and computing its princi-
pal curvature values, k1 and k3. Specifically, our approach for total
curvature estimation only requires estimation of normals and a way
to compute the Dirichlet energy — both well-studied tasks in geom-
etry processing. Source code of 1ibigl-style is freely available at
https://github.com/HeCraneChen/total-curvature-estimation.git.

2 ALGORITHM

Consider a triangle mesh with per vertex normals e.g. estimated by
off-the-shelf algorithms. The goal is to directly estimate the total
curvature over every triangle T

KT = /T(kf+k§)dp. (1)

Noting that the sum of the squares of the eigenvalues of a symmetric
matrix equals its squared Frobenius and leveraging the relationship
between the shape operator and the derivatives of the Gauss map,

we obtain
3
k= (193l dp= Y [1mil dp @
T —~Jr

where ii = (ny,n2,n3) : T — S? is the (Gauss) map assigning a
normal to every point on the triangle.

The advantage of the formulation in Equation 2 is that it does not
require the estimation of the shape operator. Instead, the integrals
are simply the Dirichlet energies of the coordinate functions of the
Gauss map - quantities that can be computed using the cotangent
Laplacian stiffness matrix.

Concretely, given a triangle T € 7, letting St € R3*3 denote
the cotangent Laplacian stiffness matrix associated with triangle T
and setting N7 € R3*3 to be the matrix whose column vectors are
the normals at the vertices of T, we get:

kT =~ Trace (NT - St N;) .

Note that this is an approximate estimate of the total curvature
because the cotangent Laplacian assumes values are linearly inter-
polated from the vertices, whereas a Gauss map would require that
the interpolated normal vectors be normalized to have unit-length.

https://github.com/HeCraneChen/total-curvature-estimation.git

Crane He Chen

Figure 2: Comparison of curvature estimation on point clouds. (first row: knot, second row: torus)

Similar treatment can be applied to oriented point clouds. With
normals given, all that is required is the definition of a stiffness
matrix. For example, we can use the approach of Belkin et al. [Belkin
et al. 2008] which defines a system matrix by constructing a local
triangulation around each sample.

3 PERFORMANCE

For triangle meshes, we evaluate the Hausdorff distance between
the decimated triangle mesh and the original triangle mesh, as
demonstrated in Table 1. For point clouds, we evaluate the RMSE
distance between the estimated curvature and ground truth curva-
ture quantitatively in Table 2 and qualitatively in Figure 2. It can
be observed that our method performs better than the methods
adopted in popular libraries. It should be noted that the implemen-
tation in CGAL normalizes the eigenvalues of the covariance matrix
w.r.t. local sampling density by dividing the sum of all eigenvalues,
PCL normalizes by number of points within fixed radius. They are
not as precise as normalizing by the area of triangles as suggested
by our method or by the volume of voronoi cells as suggested
in [Mérigot et al. 2010]. For fairness of comparison, the results we
show for PCL and CGAL are after carefully re-scaling using the
ground truth curvature. Additionally, from Table 2, the quality of
normal has non-negligible effects on the performance of curvature
estimation.

Table 1: Hausdorff distance between feature-aware decimated
mesh and the original mesh for the bunny (top), cow (middle),
and armadillo man (bottom) models.

metric Libigl Meshlab Trimesh2 Ours
[Panozzo et al. 2010] [Taubin 1995] [Rusinkiewicz 2004]
RMS 0.0066 0.0062 0.0056 0.0054
Max 0.0542 0.0608 0.0533 0.0385
RMS 0.0073 0.0071 0.0085 0.0069
Max 0.0731 0.0427 0.0459 0.0385
RMS 0.0031 0.0027 0.0031 0.0027
Max 0.0370 0.0233 0.0324 0.0174

Table 2: RMSE between ground truth curvature and estimated
curvature on point clouds for the knot (top) and torus (bot-
tom) models.

samolin PCL CGAL Ours Ours
Ping [Mérigot et al. 2010] (N est.) (N gt)
uniform 292.8847 342.6716 237.3573 197.5912
nonuniform 309.8654 345.6605 295.0542 221.0447
sparse 387.7908 438.9999 315.5943 315.7218
uniform 1.4364 1.9893 0.8138 0.0219
nonuniform 1.5057 2.0118 1.3447 0.0367
sparse 1.5792 2.4791 0.6501 0.0548

4 DISCUSSION

We have introduced a simple yet effective method for total curvature
estimation that is easy to integrate within existing libraries. Our
results demonstrate that this method surpasses the accuracy of
standard implementations that estimate the shape operator.

REFERENCES

Mikhail Belkin, Jian Sun, and Yusu Wang. 2008. Discrete Laplace operator on meshed
surfaces. In Proceedings of the twenty-fourth annual symposium on Computational
geometry. 278-287.

Quentin Mérigot, Maks Ovsjanikov, and Leonidas J Guibas. 2010. Voronoi-based cur-
vature and feature estimation from point clouds. IEEE Transactions on Visualization
and Computer Graphics 17, 6 (2010), 743-756.

Daniele Panozzo, Enrico Puppo, and Luigi Rocca. 2010. Efficient multi-scale curvature
and crease estimation. Proceedings of Computer Graphics, Computer Vision and
Mathematics (Brno, Czech Rapubic 1, 6 (2010).

Szymon Rusinkiewicz. 2004. Estimating curvatures and their derivatives on trian-
gle meshes. In Proceedings. 2nd International Symposium on 3D Data Processing,
Visualization and Transmission, 2004. 3DPVT 2004. IEEE, 486-493.

Gabriel Taubin. 1995. Estimating the tensor of curvature of a surface from a polyhedral
approximation. In Proceedings of IEEE International Conference on Computer Vision.
IEEE, 902-907.

Max Wardetzky, Miklés Bergou, David Harmon, Denis Zorin, and Eitan Grinspun.
2007. Discrete quadratic curvature energies. Computer Aided Geometric Design 24,
8-9 (2007), 499-518.

Appendix

1 TRIANGLE MESHES

We compare results for parametric surfaces, for which an analytic
expression of curvature can be obtained. Similar to Taubin [Taubin
1995], we evaluate total curvature estimation on the two different
triangulations of a surface (icosahedron-subdivided spheres, and
polyhedral tori constructed by regular grids of different resolutions).
Numerical results for the meshes shown in Figure 1 are presented
in Table 1. For these results, the normal vector at each point is
calculated by differentiating the parameterization.

Figure 1: Meshes used for evaluation. First row: 4-subdivision,
5-subdivision, and 6-subdivision sphere from icosahedron.
Second row: tori obtained by triangulating 9x9, 18x18, 36x36
grids.

To verify and compare the efficacy of our approach on complex
models, specifically those with unknown parameterizations and
ground truth curvatures, we turn our attention to the mesh dec-
imation task. This enables us to evaluate the effectiveness of the
different approaches. The metric we use is the Hausdorff distance
between the original mesh and the results of feature-aware decima-
tion using curvature obtained from different estimation methods
as cost function or per-vertex weight.

Here comes the implementation details. In particular, we incorpo-
rated our total curvature estimation method into two pipelines for
the task, one successive method inspired by Hoppe [Hoppe 1996]
using shortest-edge-mid-point cost, and the other is a quadratic
energy-based method inspired by QSLIM [Garland and Heckbert
1997]. In the successive methods, edge length is one of the most
commonly selected cost, and its midpoint is selected as the merged
vertex when edge collapsing happens. We incorporate the total
curvature as a weight, which is multiplied to the edge length, to
formulate a new cost function. Comparative results are shown in
Figure 2. It can be observed that highly curved regions around the
arm of the mother have higher resolution, whereas conventional
shortest-edge-midpoint maintains similar resolution everywhere.
In the QSLIM inspired method, a total curvature weight is assigned

to each vertex. The results are shown in Figure 3. Final results
from the tables in the paper are obtained from the QSLIM inspired
method.

Figure 2: Comparison of decimation algorithms with and
without curvature incorporated into cost function. Left: cur-
vature of the original mesh. Middle: decimated mesh using
shortest-edge-mid-point algorithm. Right: decimated mesh
incorporating total curvature estimated by our algorithm
into shortest-edge-mid-point algorithm.

Figure 3: QSLIM-inspired feature-aware mesh decimation,
where total curvature estimated by our method is used as
weights. Left: before decimation. Right: after decimation.

2 POINT CLOUDS

Our approach generalizes to point clouds, and can be implemented
as follows: (1) For each point p, find its k-nearest neighbors Ny (p) =
{p1, P2, .- Pr }, and project these points onto the tangent plane of
the surface into T (p) = {pt1, pr2, - Pric }- (2) Comute a Delaunay
triangulation of Ty (p), and extract the one-ring of triangles incident
on p. (3) Calculate the curvature at p by averaging the per-triangle
Dirichlet energies of the 1-ring neighborhood, as in the computation
of total curvature for triangle meshes. The results of this total
curvature estimation are shown in Figure 4.

In our results, “uniform” refers to a dense Poisson Disk sampling
on the triangle mesh with around 20k points, “nonuniform” refers
to first oversampling 40k points on the triangle mesh with Poisson
Disk sampling, then randomly sample around 20k points form
the 40k points, “sparse” refers to sparse Poisson Disk sampling

Table 1: RMSE between ground truth and estimation of total curvature on regular triangulations of the sphere and torus at

different resolutions.

Libigl

luti
resolution [Panozzo et al. 2010]

Meshlab
[Taubin 1995]

Trimesh2 Ours
[Rusinkiewicz 2004]

icosahedron-subdivided spheres

4-subdivision 0.1104 0.0308 0.0155 0.0000

5-subdivision 0.0271 0.0353 0.0155 0.0000

6-subdivision 0.0067 0.0382 0.0155 0.0000
polyhedral torus

9x9 grid 19.2708 2.5869 1.6643 0.4759

18 x 18 grid 3.5917 2.6976 1.1838 0.1425

36 x 36 grid 1.28 2.7072 1.0621 0.0372

Table 2: RMSE between ground truth and estimation of total curvature on the point clouds of knots.

sampling PCL

CGAL[Meérigot et al. 2010]

Ours (N est.) Ours (N gt)

a torus knot

uniform 61.7166 85.9137 25.1193 7.8117

nonuniform 81.3795 86.0262 67.1373 8.0127

sparse 85.7216 60.2592 28.7982 7.6624
another knot

uniform 182.7609 218.5101 58.3876 35.484

nonuniform 195.2599 243.3259 94.2648 37.1814

sparse 208.9368 283.0388 178.3064 52.0716

with around 2k points. Ground truth normals refers to the normals
calculated either parametrically or estimated on the pre-known
triangle mesh. Estimated normals refers to the normals estimated
directly from the point clouds based on the covariance matrix of
k-nearest-neighbors. Each patch might have inconsistent sign for
the normal compared to other patches. We propagate the normal
orientation using a minimum spanning tree.

During the experiments, emperically, we found that compared
to CGAL and PCL, our method is less sensitive to parameters. Our
method takes into account the one-ring-neighborhood based on
the local Delaunay triangulation. The only parameter to tune is the
k of k-nearest neighbors. We select k = 20 for the case of dense
sampling, and k = 10 for the case of sparse sampling. Whereas both
CGAL and PCL have two parameters related to radius that need to
be fine-tuned in order to get good results. The parameters could
differ a lot from model to model, and their selection procedure
could be time-consuming. Take the torus knot as example, CGAL
needs R = 0.1,r = 0.09 for dense sampling and R = 0.2,r = 0.18
for sparse sampling. Whereas the torus in the paper works the
best with R = 0.3, 7 = 0.1. Similarly, in PCL, the torus knot needs
r1 =r2 = 0.03 for dense sampling r1 = r2 = 0.1 for sparse sampling,
whereas the torus needs r1 = r2 = 0.3.

More results for point clouds are presented in Table 2. Qualita-
tive comparisons of estimated curvature on uniform, nonuniform,
and sparse point clouds with ground truth normals are shown in
Figure 5. Qualitative comparisons for the effect of quality of normal

on curvature estimation are shown in Figure 6. It can be observed
that the proposed method is robust with respect to the density and
regularity of sampling, but sensitive to the quality of estimated
normals.

ACKNOWLEDGMENTS

The author would like to express particular gratitude to Michael
Kazhdan for advising the research and sharing valuable insights.
To department of Mechanical Engineering at the Johns Hopkins
University for funding this project through a departmental fellow-
ship. Gretar Tryggvason and Noah Cowan from the department
have been supportive throughout this process.

REFERENCES

Mikhail Belkin, Jian Sun, and Yusu Wang. 2008. Discrete Laplace operator on meshed
surfaces. In Proceedings of the twenty-fourth annual symposium on Computational
geometry. 278-287.

Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. 209-216.

Hugues Hoppe. 1996. Progressive meshes. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques. 99-108.

Quentin Mérigot, Maks Ovsjanikov, and Leonidas J Guibas. 2010. Voronoi-based cur-
vature and feature estimation from point clouds. IEEE Transactions on Visualization
and Computer Graphics 17, 6 (2010), 743-756.

Daniele Panozzo, Enrico Puppo, and Luigi Rocca. 2010. Efficient multi-scale curvature
and crease estimation. Proceedings of Computer Graphics, Computer Vision and
Mathematics (Brno, Czech Rapubic 1, 6 (2010).

Szymon Rusinkiewicz. 2004. Estimating curvatures and their derivatives on trian-
gle meshes. In Proceedings. 2nd International Symposium on 3D Data Processing,

Appendix

Figure 5: Comparison of curvature estimation on point cloud
with respect to point sampling. First row: ground truth cur-
vature of torus knot. Second row: curvature of torus knot
estimated by our method. Third row: ground truth curvature
of another knot. Fourth row: curvature of another knot esti-
mated by our method. To isolate the problem of sampling,
normals in this visualization are ground truth normals.

Figure 6: Comparison of curvature estimation on point cloud
with respect to quality of normal. First row: torus knot. Sec-
ond row: another knot.

Figure 4: Curvature estimation from point clouds. Top to
bottom: Delaunay Triangulation on tangent plane of the
surface at the sample; local triangulation constructed with
Delaunay Triangulation lifted to 3D, similar to as described
in [Belkin et al. 2008]; local triangles locating on the shape;
Curvature estimated on point clouds. Left to right: bunny
(7738 points), lion (8356 points), cow (2762 points).

Visualization and Transmission, 2004. 3DPVT 2004. IEEE, 486-493.

Gabriel Taubin. 1995. Estimating the tensor of curvature of a surface from a polyhedral
approximation. In Proceedings of IEEE International Conference on Computer Vision.
IEEE, 902-907.

	Abstract
	1 Introduction
	2 Algorithm
	3 Performance
	4 Discussion
	References

