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PREFACE
In writing this introductory book on the old but still rapidly expanding

field of Mathematics known as Partial Differential Equations. our objec-
tive has been to present an elementary treatment of the most important
topics of the theory together with applications to problems from the
physical sciences and engineering. The book should be accessible to
students with a modest mathematical background and should be useful
to those who will actually need to use partial differential equations in
solving physical problems. At the same time we hope that the book will
provide a good basis for those students who will pursue the study of
more advanced topics including what is now known as the modern theory.

Throughout the book, the importance of the proper formulation of
problems associated with partial differential equations is emphasized.
Methods of solution of any particular problem for a given partial differ-
ential equation are discussed only after a large collection of elementary
solutions of the equation has been constructed.

During the last five years, the book has been used in the form of lecture
notes for a semester course at Purdue University. The students are
advanced undergraduate or beginning graduate students in mathematics,
engineering or one of the physical sciences. A course in Advanced
Calculus or a strong course in Calculus with extensive treatment of
functions of several variables, and a very elementary introduction to
Ordinary Differential Equations constitute adequate preparation for the
understanding of the book. In any case, the basic results of advanced
calculus are recalled whenever needed.

The book begins with a short review of calculus and ordinary differ-
ential equations. A new elementary treatment of first order quasi-linear
partial differential equations is then presented. The geometrical back-
ground necessary for the study of these equations is carefully developed.
Several applications are discussed such as applications to problems in
gas dynamics (the development of shocks), traffic flow, telephone net-
works, and biology (birth and death processes and control of disease).
The method of probability generating functions in the study of stochastic
processes is discussed and illustrated by many examples. In recent books
the topic of first order equations is either omitted or treated inadequately.
In older books the treatment of this topic is probably inaccessible to
most students.

A brief discussion of series solutions in connection with one of the
basic results of the theory, known as the Cauchy-Kovalevsky theorem,
is included. The characteristics, classification and canonical forms of
linear partial differential equations are carefully discussed.

For students with little or no background in physics, Chapter VI,
"Equations of Mathematical Physics," should be helpful. In Chapters VII,
VIII and IX where the equations of Laplace, wave and heat are studied, the
physical problems associated with these equations are always used to
motivate and illustrate the theory. The question of determining the well-
posed problems associated with each equation is fundamental throughout
the discussion.
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The methods of separation of variables and Fourier series are intro-
duced in the chapter on Laplace's equation and then used again in the
chapters on the wave and heat equations. The method of finite differences
coupled with the use of computers is illustrated with an application to
the Dirichlet problem for Laplace's equation.

The last chapter is devoted to a brief treatment of hyperbolic systems
of equations with emphasis on applications to electrical transmission
lines and to gas dynamics.

The problems at the end of each section fall in three main groups.
The first group consists of problems which ask the student to provide
the details of derivation of some of the items in the text. The problems
in the second group are either straightforward applications of the theory
or ask the student to solve specific problems associated with partial
differential equations. Finally, the problems in the third group introduce
new important topics. For example, the treatment of nonhomogeneous
equations is left primarily to these problems. The student is urged at
least to read these problems.

The references cited in each chapter are listed at the end of that
chapter. A guide to further study, a bibliography for further study and
answers to some of the problems appear at the end of the book.

The book contains roughly twenty-five percent more material than can
be covered in a one-semester course. This provides flexibility for planning
either a more theoretical or a more applied course. For a more theoretical
course, some of the sections on applications should be omitted. For a
more applied version of the course, the instructor should only outline the
results in the following sections: Chapter III, Section 4; Chapter IV,
Sections 1 and 2; Chapter V Sections 5, 6, 7, 8, and 9 (the classification
and characteristics of second order equations should be carefully dis-
cussed, however); Chapter VII, the proof of Theorem 10.1 and Section
11.

We are indebted to many of our colleagues and students for their
comments concerning the manuscript, and extend our thanks for their
help. Finally, to Judy Snider, we express our deep appreciation for her
expert typing of the manuscript.

Purdue University E. C. ZACHMANOGLOU
1975 DALE W. THOE
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CHkPTER I
Some concepts from
calculus and ordinary
differential equations

In this chapter we review some basic definitions and theorems from
Calculus and Ordinary Differential Equations. At the same time we
introduce some of the notation which will be used in this book. Most
topics may be quite familiar to the student and in this case the chapter
may be covered quickly.

In Section 1 we review some concepts associated with sets, functions,
limits, continuity and differentiability. In Section 2 we discuss surfaces
and their normals and recall one of the most useful and important theo-
rems of mathematics, the Implicit Function Theorem. In Section 3 we
discuss two ways of representing curves in three or higher dimensional
space and give the formulas for finding the tangent vectors for each of
these representations. In Section 4 we review the basic existence and
uniqueness theorem for the initial value problem for ordinary differential
equations and systems.

1. Sets and Functions
We will denote by the n-dimensional Euclidean space. A point in

has n coordinates x1, x2 and its position vector will be denoted by
x. Thus x = (x1 For n = 2 or n = 3 we may also use different
letters for the coordinates. For example, we may use (x, y) for the
coordinates of a point in R2 and (x, y, z) or (x, y, u) for the coordinates of a
point in R3.

The distance between two points x = (x1 andy = (y1

in is given by

d(x, y)
=

An open ball with center x° E and radius p > 0 is the set of points in
which are at a distance less than p from x°,
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(1.1) B(x°, p) = {x:x E d(x, x°) <p}.

The corresponding closed ball is

(1.2) p) = {x:x E d(x, x°) p}

and the surface of this ball, called a sphere, is

(1.3) p) = {x:x E d(x, x°) = p}.

A set A of points in is called open if for every x E A there is a ball
with center at x which is contained in A. A set in is called closed if its
complement is an open set. A point x is called a boundary point of a set A
if every ball with center at x contains points of A and points of the
complement of A. The set of all boundary points of A is called the
boundary of A and is denoted by 3A.

It should be easy for the student to show that the open ball B(x°, p)
defined by equation (1.1) is an open set while the closed ball B(x°, p)
defined by (1.2) is a closed set. The boundary of both these sets is the
sphere S(x°, p) defined by equation (1.3). As another example, in R2 the
set

{(x1, x2):x2> O}

is open, while the set

{(x1, x2):x2 O}

is closed. The boundary of both of these sets is the x1-axis. Also in R2, the
rectangle defined by the inequalities

a<x1<b, c<x2<d
is open, while the rectangle

is closed. However, the inequalities

c<x2<d
define a set which is neither open nor closed. All the above three sets
have the same boundary which the student should describe by means of
equalities and inequalities.

Aneighborhood of a point any open set containing the point. All
open balls centered at a point x° are neighborhoods of x°. Thus, a point
has neighborhoods which are arbitrarily small. Note also that an open set
is a neighborhood of each of its points.

An open set A in is called connected if any two points of A can be
connected by a polygonal path which is contained entirely mA. An open
and connected set in is called a domain. A domain will be usually
denoted in this book by the letter ft

A set A in is called bounded if it is contained in some ball of finite
radius centered at the origin.

We consider now functions defined for all points in some set A in
and with values real numbers. Such functions are called real-valued
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functions. The set A is called the domain off and the set of values off is
called its range. For simplicity in this discussion, we take n = 2. Thus we
consider only functions of two independent variables. All the definitions
and theorems that we mention below are valid for functions of more than
two variables. The student should formulate the appropriate statements of
the corresponding definitions and theorems for such functions.

Letf be a function defined for all points (x, y) in some set A in R2. Let

(x°, y°) be a fixed point in A or on We say thatf has limit L as (x, y)
approaches (x°, y°) and we write

lim f(x, y) = L

if, given any 0, there is a > 0 such that

ff(x,y) - Ll<€
for all (x, y) (x°, y°) such that

(x, y) E B((x°, y°), fl A.

In other words,f(x, y) Las (x, y) (x°, y°) if given any positive number
we can find a positive number such that the distance off(x, y) from L is

less than for all points (x, y) of A which are at a distance less than from
(x°, y°) excepting possibly the point (x°, y°) itself. The functionf is said to
be continuous at the point (x°, y°) E A if

lim f(x, y) = f(x°, y°).
(x,u)—'(x°

f is called continuous in A if it is continuous at every point of A.
We now state an important theorem concerning the maximum and

minimum values of a continuous function: Let A be a closed and bounded
set in and suppose that I is defined and continuous on A. Then fattains
its maximum and minimum values in A; i.e., there is a point a E A such
that

f(a) 1(x), for every x E A

and a point b E A such that

1(b) f(x), for every x E A.

Next we recall the definition of the partial derivatives off at a point (x°,
y°) of its domain A. Since this involves the values of f at points in a
neighborhood of (x°, y°), we must assume either that the domain A is open
or that (x°, y°) is an interior point of A (see Problem 1.3). In either case the
points (x° + h, y°) and (x°, y° + k) with sufficiently small hi and Iki belong
to A. We say that the partial derivative off with respect to x exists at (x°,
y°) if the limit

• f(x° + h, y°) — f(x°, y°)
lim

h

exists. Then the value of this limit is the value of the derivative,
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• f(x° + h, y°) — f(x°, y°)—(x°,y)=lim
ax h

Similarly,

af f(x°, y° + k) — f(x°, y°)—(x°,y)=hm
ay k-*O k

If the partial derivatives offwith respect to x or y exist at every point in a
subset B of A, then they are themselves functions with domain the set B.
We will denote these functions by

D1f or or
ax

and by

D2f or or
ay

In general, D, will stand for the differentiation operator with respect to the
jth variable in

a j=1,...,n.
If the partial derivatives themselves have partial derivatives, these are
called the second order derivatives of the original function. Thus a
function I of two variables may have four partial derivatives of the second
order,

a2f a2f

It is not hard to show that if D1f, D2f, D1DZJ and D2D1f are continuous
functions in an open set A then the mixed derivatives are equal in A,

D2D1J= DIDZ!.

Partial derivatives of any order higher than the second may also exist and
are defined in the obvious way.

Let fbe a function defined in a set A and suppose thatfand all its partial
derivatives of order less than or equal to k are continuous in a subset B of
A. Then I is said to be of class Cc in B. The collection of all functions of
class Cc in B is denoted by Cc(B). Thus, a short way of indicating that f is
of class Cc in B is by writing f E Cc(B). C°(B) is the collection of all
functions which are continuous in B and is the collection of all
functions which have continuous derivatives of all orders in B.

All polynomials of a single variable as well as the functions sin x, cos x,
ex are of class in R1. The function



Calculus and Ordinary Differential Equations 5

10 iff(x)= lx if x>0
is of class in R' but f is not of class C1 in R1. The function

11, ifg(x)= l1+x2, if x>0
is of class C1 in R1 but g is not of class C2 in R'. These last two examples
illustrate that we have the sequence of inclusions

C2(B) 3 C1(B) 3 C2(B) 3 ... 3
and that each class is actually smaller than

Problems

1.1 Prove that a closed set contains all of its boundary points while an
open set contains none of its boundary points.

1.2 The closure A of a set A is defined to be the union of the set and of its
boundary,

A = A U 3A.

Prove that if A is closed, then A = A. Describe the closures of the
sets given as examples in Section 1.1.

1.3 A point x E A is called an interior point of A if there is an open ball
centered at x and contained in A. The set of interior points of A is
called the interior of A and is denoted by A. Show that if A is open
thenA =A.

1.4 Give an example of a function defined in R2 which is of class C1 in R2
but not of class C2 in R2.

1.5 Using the definition of limit of a function, show that

x4+y4
. 2(a) lim

2
= 0 (b) lim [xy log (x2 + y)] = 0

(x,y)—'(O,O) X2 + y (x,jO—'(O,O)

1.6 Show that the mixed partial derivatives of the function

— XY3 if (x, (0,0)

f(x,y)= 3 X2+Y2

0 if (x,y)=(0,0)

are not equal. Explain.

2. Surfaces and Their Normals. The Implicit Function
Theorem

A useful way of visualizing a function I of one variable x is by drawing
its graph in the (x, y)-plane. We write y = 1(x) and draw the locus of points
of the form (x,f(x)) where x varies over the domain off. Usually the graph
off is a curve in the (x, y)-plane. However not every curve in the (x, y)-
plane is the graph of some function. For example a circle is not the graph
of any function.
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In principle, we should be able to draw the graph of a function of any
number of variables but we are limited by our inability to draw figures in
more than three dimensions. Consequently we can actually draw the
graphs of functions of up to two variables only. Iffis a function of x andy,
we write z = f(x, y) and draw in (x, y, z)-space the locus of points of the
form (x, y, f(x, y)) where (x, y) varies over the domain of 1. Although the
graph off is usually a surface, not every surface in three dimensions is the
graph of some function of two variables. For example, a sphere is not the
graph of any function. Since surfaces will play a central role in many of
our discussions, we will describe now a class of surfaces more general
than the surfaces obtained as graphs of functions. For simplicity we
restrict the discussion to the case of three dimensions.

Let fl be a domain in R3 and let F(x, y, z) be a function in the class
C'ffl). The gradient of F, written grad F, is a vector valued function
defined in fl by the formula

11W aF
(2.1) gradF= I— — —

\ax ay az

The value of grad Fat a point (x, y, z) E flis a vector with components the
values of the partial derivatives of F at that point. It is convenient to
visualize grad F as a field of vectors (vector field), with one vector, grad
F(x, y, z), emanating from each point (x, y, z) in fl.

We now make the assumption

(2.2) grad F(x, y, z) (0, 0, 0)

at every point of fl. This means that the partial derivatives of F do not
vanish simultaneously at any point of fl. Under the assumption (2.2), the
set of points (x, y, z) in fl which satisfy the equation

(2.3) F(x, y, z) = c,

for some appropriate value of the constant c, is a surface in fl. This
surface is called a level surface of F. The appropriate values of c are the
values of the function Fin fl. For example, if (x0, Yo, z0) is a given point in
fl and if we take c = F(x0, Yo' z0), the equation

F(x, y, z) = F(x0, Yo, z0)

represents a surface in fl passing through the point (x0, y0, z0). For
different values of c, equation (2.3) represents different surfaces in fl.
Each point of fl lies on exactly one level surface of F and any two points
(x0, Yo' z0) and (x1, z1) of fl lie on the same level surface if and only if

F (x0, Yo, z0) = F(x1, z1).

Thus, fl can be visualized as being laminated by the level surfaces ofF.
Quite often we consider c in equation (2.3) as a parameter and we say

that equation (2.3) represents a one-parameter family of surfaces in ft
Through each point in fl passes a particular member of this family
corresponding to a particular value of the parameter c.

As an example let
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F(x,y,z)=x2+y2+z2.

grad F(x, y, z) = (2x, 2y, 2z)

and if fl is the whole of R3 except for the origin, condition (2.2) is satisfied
at every point of fl. The level surfaces of F are spheres with center the
origin. As another example, let

F(x, y, z) = z.

Then grad F(x, y, z) = (0, 0, 1) and condition (2.2) is satisfied at every
point of R3. The level surfaces are planes parallel to the (x, y)-plane.

Let us consider now a particular level surface given by equation (2.3)
for a fixed value of c. Under our assumptions on F, there is a tangent
plane to at each of its points. At the point of tangency the value of
grad Fis a vector normal to the tangent plane. For this reason we say that,
at each point of Sc, the value of grad F is a vector normal to Sc.

Let us recall the equation of a plane in R3. Since we are using the letters
x, y, z for the coordinates we shall use r for the position vector of a point
with coordinates (x, y, z). Thus r = (x, y, z). Suppose now that P is a plane
passing through a fixed point r0 = (x0, Yo' z0) and having n = (nm, ni,, as

Fig. 2.1

z1
grad F(x, y, z)
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Fig. 2.2

n

its normal vector, if r is the position vector of an arbitrary point on P,
then the vector r — r0 lies on P and hence it must be normal to n. It follows
that

(2.4)

or, in terms of the coordinates,

(r — r0)n = 0

(2.5) (x — + (y — y0)fly + (z — = 0.

Equation (2.5) is the equation of the plane P. Note that (2.5) has the
form of (2.3) where F(x, y, z) is the left hand side of (2.5) and grad F =
(ni, ne).

Returning now to the level surface given by (2.3), it is easy to see that
the equation of the tangent plane to Sc at the point (x0, Yo' z0) of is

1
(2.6) (x — x0)

I
— (x0, Yo, z0) I + (Y — Yo) I

— (x0, Yo, z0)
L3X J L3)'

1
+ (z — z0) I— (x0, Yo, z0) I = 0

L3Z i
or, in vector form,

(2.7) (r — r0) grad F(r0) = 0.

As an example, let us find the equation of the plane tangent to the
sphere
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x2 + y2 + z2 = 6

at the point (1, 2, —1). We have

F(x,y,z)=x2+y2+z2,
grad F (x, y, z) = (2x, 2y, 2z),

and

grad F(1, 2, —1) = (2, 4, —2).

The vector (2, 4, —2) is normal to the sphere at the point (1, 2, —1) and the
equation of the tangent plane at (1, 2, —1) is

2(x— 1)+4(y—2)—2(z+ 1)=O.
Again, let us consider the surface given by equation (2.3) and

suppose that the point (x0, Yo' z0) lies on this surface. We ask the following
question: Is it possible to describe Sc by an equation of the form

(2.8) z = f(x, y),

so that Sc is the graph of f? This is equivalent to asking whether it is
possible to solve equation (2.3) for z in terms of x and y. An answer to
this question is given by the

Implicit Function Theorem

If Yo' z0) 0, then (2.3) can be solved for z in terms of x and y for
(x, y, z) near the point (x0, Yo' z0). Moreover, the partial derivatives of z
with respect to x and y, i.e., the partial derivatives off in (2.8), can be
obtained by implicit differentiation of (2.3) where z is considered as a
function of x and y,

(29)
ax ay

Of course, there is nothing special about the variable z. If does not
vanish at (x0, Yo' z0), then near (x0, Yo' z0) we can solve (2.3) for x and we
can compute the derivatives of x with respect to y and z by implicit
differentiation. In fact, if F satisfies condition (2.2) at every point of fl,
then the implicit function theorem asserts that, in a neighborhood of any
point of fl, we can always solve equation (2.3) for at least one of the
variables in terms of the other two. A proof of the Implicit Function
Theorem may be found in any book on Advanced Calculus. (See for
example Taylor.')

Again, as an example let us consider the equation of the unit sphere

(2.10) x2 + y2 + z2 = 1.

At the point (0, 0, 1) of this surface we have 0, 1) = 2. By the implicit
function theorem, we can solve (2.10) for z near the point (0, 0, 1). In fact
we have
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In the upper half space z > 0, equations (2.10) and (2.11) describe the
same surface. The point (0, 0, — 1)is also on the surface (2.10) and 0,

0, —1) we have

(2.12)

z < the
the other hand, at the point (1, 0, 0) we have 0, 0)

= 0 and it is easy to see that it is not possible to solve (2.10) for z in terms
of x and y near this point. However, it is possible to solve for x in terms of
y and z. Finally, near the point which satisfies (2.10)
it is possible to solve for every one of the variables in terms of the other
two.

Problems

2.1. Let F(x,y,z)=z2—x2—y2
(a) Find grad F. What is the largest set in which grad F does not

vanish?
(b) Sketch the level surfaces F(x, y, z) = c with c = 0, 1, —1. (Hint:

Set r2 = x2 + y2).
(c) Find a vector normal to the surface

z2 — x2 — y2 = 0

at the point (1, 0, 1), and the equation of the plane tangent to the
surface at that point. What happens at the point (0, 0, 0) of the
surface?

2.2. Sketch the surface described by the equation

(z — z0)2 — (x — x0)2 — (y — = 0

where (x0, Yo' z0) is a fixed point. Show that if n = (ny, is a
vector normal to the surface then

n makes a 450 angle with the z-axis.
2.3. Find the equation of the plane tangent to the paraboloid

z = x2 + y2

at the point (1, 1, 2).
2.4. In R2, a level surface of a function F of two variables is a curve (level

curve of F) and a tangent plane is a line. Find the equation of the line
tangent to the curve

x4 + x2y2 + y4 = 21

at the point (1, 2).
2.5. If possible, solve the equation

z2 — x2 — y2 = 0.

for z in terms of x, y near the following points:
(a) (1, 1, (b) (1, 1, — (c) (0, 0, 0).
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2.6. By implicit differentiation derive formulas (2.9).
2.7. Prove the identities

(a) grad(f + g) = grad f + grad g
(b) grad g g grad f.

3. Curves and Their Tangents
The most common way of describing a curve in R3 is by means of a

parametric representation. If r denotes the position vector of a point on a
curve C, then C may be described by the vector equation

(3.1) r = F(t), t El,
where I is some interval on the real axis and F(t) = (f1(t), 12(1), f3(t)) is a
vector valued function of the parameter t. If we writer = (x, y, z), then the
vector equation (3.1) is equivalent to the three equations

(3.2) x = y = f2(t), z =f3(t); t El.

We will assume that the functions f1,f2 and 13 belong to C1(I) and that their
derivatives do not vanish simultaneously at any point of I,

(3.3) (0,0,0), tEl.
Then for each t E I the nonvanishing vector

dr — dF(t) (df1(t) df2(t) df3(t)

dt dt

is tangent to the curve C at the point (f(t), f2(t), f3(t)) of C.

Example 3.1. It is easy to see that the equations

(3.4) x = cos t y = sin 1, z = t; t E R'
represent a helix (see Fig. 3.1). We have

/dx dy dz\
= (— sint,cost, 1).

To t = ir/2 corresponds the point (0, 1, ir/2) on the helix and at that point
the vector (— 1, 0, 1)is tangent to the helix.

Another way of describing a curve in R3 is by making use of the fact that
the intersection of two surfaces is usually a curve. Let F1 and F2 be two
real valued functions of class C' in some domain fl in R3 and suppose
grad F1 and grad F2 do not vanish in fl. Then, as we saw in Section 2, the
set of points satisfying each of the equations

(3.5) F1(x, y, z) = c1, F2(x, y, z) = c2

isa surface, and hence the set of points satisfying both equations must lie
on the intersection of these two surfaces. This intersection, if not empty,
is in general a curve. In fact if we make the additional assumption that
grad F1 and grad F2 are not collinear at any point of fl then the intersection
(if not empty) of the two surfaces given by each of the equations (3.5) is



12 Introduction to Partial Differential Equations

Fig. 3.1

always a curve. This assumption can be expressed in terms of the cross
product,

(3.6) [grad F1(x, y, z)] x [grad F2(x, y, z)] 0, (x, y, z) E fl.

We prove the above assertion by showing that, under the assumption
(3.6), if (x0, Yo, z0) is any point in fl satisfying equations (3.5), then near
(x0, Yo' z0) the set of points (x, y, z) satisfying (3.5) can be described
parametrically by equations of the form (3.2). Since

/3(F1, F2) a(F1, F2) a(F1, F2)
(3.7) grad F1 x grad F2 = I —______\ a(y, z) 3(z, x) 3(x, y)

where, for example, a(F1, F2)/a(y, z) is the Jacobian

a(F1, =
a(y,z)

9z

9z

— aF1 aF2 aF1 3F2

— t9y 9z 9z ay'

condition (3.6) means that at every point of flat least one of the Jacobians
on the right side of (3.7) is different from zero. Suppose for example that



a(F1, F2) I
* 0.

a(y, z) 110,
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(3.8)

Then a more general form of the Implicit Function Theorem (see Taylor,'
Section 8.3) asserts that near (x0, Yo' z0) it is possible to solve the system of
equations (3.5) for y and z in terms of x,

(3.9) y = g(x), z = h(x).

If we set x = t, equations (3.9) can be written in the parametric form

(3.10) x = t, y = g(t), z = h(t).

This shows that near (x0, Yo' z0) the set of points (x, y, z) satisfying (3.5)
forms a curve with parametric representation given by (3.10). Note that in
(3.10) the variable x is actually used as the parameter of the curve. In
general, under the assumption (3.6), equations (3.5), with appropriate
values of c1 and c2, represent a curve. Near any one of its points this curve
can be represented parametrically, with one of the variables used as the
parameter.

Example 3.2. Let

F,(x,y,z)=x2+y2—z, F2(x,y,z)=z.
We have grad F1 = (2x, 2y, — 1), grad F2 = (0, 0, 1) and it is easy to see that

x2 + y2 — z = 0

Fig. 3.2
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if fl is R3 with the z-axis removed, then in fl condition (3.6) is satisfied.
The pair of equations

x2 + y2 — z = 0, z = 1

represents a circle which is the intersection of the paraboloidal surface
represented by the first equation and the plane represented by the second
equation. The point (0, 1, 1) lies on the circle, and near this point the circle
has the parametric representation

x = t, y = +VT7, z = 1; t E (—1, 1).

Suppose now that a curve C is given parametrically by equations (3.2)
where the functions f1, f2, f3 satisfy condition (3.3). Is it possible to
represent C by a pair of equations of the form (3.5)? Or, in geometric
language, is C the intersection of two surfaces? Near any point of C, the
answer to this question is yes. In fact let us consider the point (x0, Yo, z0)
corresponding to t = t0 and suppose that f1'(t0) 0. Then, by the implicit
function theorem, the equation

x —f1(t) = 0

can be solved for t in terms of x for (x, t) near (x0, t0),

t = g(x).

Substituting (3.11) into the last two of equations (3.2) we obtain

(3.12) y = f2(g(x)), z = f3(g(x)).

Equations (3.12) represent C near (xo, Yo, z0) as the intersection of two
surfaces which are in fact cylindrical surfaces. The first of equations
(3.12) describes a cylindrical surface with generators parallel to the z-axis
while the second equation describes a cylindrical surface with generators
parallel to the y-axis.

Example 3.3. The third equation in (3.4) is already solved for t and is
valid for all z and t. Therefore, the helix represented parametrically by
(3.4) is also represented by the pair of equations

x=cosz, y=sinz.
Note that each of these equations is a cylindrical surface.

It should be clear now that the two methods of representing a curve in
R3 are essentially equivalent. In the sequel we will use whichever repre-
sentation is most suitable for our purposes.

Let us consider again equations (3.5). To each set of suitable values of
c1 and c2 corresponds a curve described by (3.5). For different values of c1
and c2 equations (3.5) describe different curves. The totality of these
curves is called a two-parameter family of curves and c1 and c2 are
referred to as the parameters of this family.

Example 3.4. Let F1, F2 and fl be as in Example 3.2. For suitable values
of c1 and c2, the equations
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x2+y2—z=c1, z=c2
represent a two-parameter family of curves which are circles in ft The
suitable values of c1 and c2 are all pairs of real numbers satisfying the
condition

Cl + C2 > 0.

We close this section with the following additional remarks about
curves.

In the parametric representation (3.2) of a curve C, the coordinate
functions f1, 12,13 were assumed to be in C1(1) and their derivatives were
assumed to satisfy condition (3.3). These assumptions guarantee that the
tangent vector (f11(t), f21(t), f31(t)) is always non-zero and varies continu-
ously on C, and consequently that C has no corners. Such a curve C is
sometimes called a smooth curve. In this book we will deal only with
smooth curves even though we will not always use the word smooth.

A curve C has many different parametric representations. For example,

(3.13) x=t, y=t, z=t; tE[0,00),

(3.14) x=t2— 1, y=t2—l, z=t2— 1; tE[1,00),
represent the same curve which is a straight radial line beginning at the
origin and passing through the point (1, 1, 1). We often say that (3.13) and
(3.14) are two parametrizations of this line. The student should be able to
write down many other parametrizations of this line. More generally,
suppose that a curve C is represented parametrically by equations (3.2).
Let g be a function in C1(1) such that dg(t)/dt > 0 for t E I, and set

t'=g(t), tEl.
As t varies over the interval I, t' varies over some interval I'. Since g is a
strictly increasing function, g has an inverse function h,

t = h(t'), t' E I'.

A new parametric representation of C is given by the equations

x = f1(h(t')), y = f2(h(t')), z = f3(h(t')); t' E I'.
Representing a curve as the intersection of surfaces can also be done in

many different ways. For example the curve represented parametrically
by (3.13) or (3.14) can be represented by the equations

(3.15) y—x=0, z—x=O;
or by the equations

(3.16) x+y—2z=0, z—y=0;
Further discussion of the topics of Sections 2 and 3 may be found in

standard books on Advanced Calculus such as Taylor1 or Kaplan.2

Problems

3.1. Let (x0, Yo' z0) be a point on the curve C described by equations (3.5).
Show that the vector
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[grad F1(x0, Yo' z0)] x [grad F2(x0, Yo' z0)]

is tangent to C at (x0, Yo, z0).
3.2. Find a vector tangent to the space circle

x2+y2+z2=1 x+y+z=O
at the point

3.3. Let F be a real-valued function of class C' in a domain fi of R3 with
grad F 0 in fl. Let be the level surface

F(x, y, z) = c.

Let C be a C' curve in fl given by

(x, y, z) = (f1(t), f2(t), f3(t)), t E I.

Suppose that the curve C lies on Sc. Then

F(f,(t), f2(t), f3(t)) = c, t E I.

Use the chain rule to show that at each point of C the vector tangent
to C is orthogonal to the vector normal to 5c•

3.4. The curve C given by

(x, y, z) = (sin t, cos t, 2 cos 2t), t E [—
,

lies on some level surface of

F(x,y,z)=2(x2—y2+ 1)+z.
Find the level surface Sc. Verify that at each point of C the tangent
vector to C is orthogonal to the normal vector to 5c•

3.5. Find a parametric representation for the space curve given by

x2+y2=l, x+y+z=O.
3.6. Describe the two-parameter family of curves

F,(x, y, z) = c1, F2(x, y, z) = c2

where

F1(x, y, z) =
Z

and F2 is one of the following:
(a) F2(x, y, z) = z
(b) F2(x, y, z) = x
(c) F2(x, y, z) = z + x.

4. The Initial Value Problem for Ordinary Differential
Equations and Systems

The general first order ordinary differential equation is an equation of
the form

F(t, x, x') = 0
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where F is a function of three variables and x' denotes the derivative
dx/dt. Suppose that the point (t0, x0, x01) in R3 satisfies equation (4.1) and
suppose further that D7,F(t0, x0, xo') * 0. Then the implicit function
theorem asserts that near the point (t0, x0, x01), equation (4.1) can be
solved for x',

(4.2) x' =f(t,x)
where f is a function of two variables defined in a neighborhood of the
point (t0, x0) in R2. In this section we consider only ordinary differential
equations of the form (4.2).

A solution of the ordinary differential equation (4.2) on some interval I
of the t-axis is a function x(t) defined and continuously differentiable for
t E I such that when x(t) is substituted for x in (4.2), equation (4.2)
becomes an identity in t for all t E I. The general solution of (4.2) is the
collection of all of its solutions.

If the function f in (4.2) depends only on t, the equation takes the
elementary form

(4.3) = f(t),

and, iffis continuous in some interval I, the general solution of(4.3) in the
interval I is given by

(4.4) x(t)
=

f(r)dr + c

where t0 is any fixed point in I and c is an arbitrary constant. Thus the
general solution of (4.3) is a one-parameter family of curves given by (4.4)
where c is the parameter of the family (see Fig. 4.1). If in addition to
equation (4.3) we require that the solution satisfy the condition

(4.5) x=x0 when t=to,
then we must choose the parameter c in the general solution (4.4) to be
equal to x0. Condition (4.5) is called an initial condition and the problem of
finding the solution of equation (4.3) satisfying the initial condition (4.5) is
called an initial value problem or a Cauchy problem. The solution of the
initial value problem (4.3), (4.5) is given by

(4.6) x
= J f(r)dr +

It is often useful to indicate the dependence of the solution x given by (4.6)
on the initial data t0 and x0. This is done by writing

x = x(t; t0, x0).

It is clear from equation (4.6) that the solution of the initial value problem
(4.3), (4.5) depends continuously on t0 and x0; i.e., that x(t; t0, is a
continuous function of t0 and x0. Of course the solution is a continuously
differentiable function of t in the interval I.

Under some conditions on the function f, the general solution of



equation (4.2) exists and also depends on one parameter, but it is usually
difficult if not impossible to write a simple formula for it. It is easy to see,
however, that if x = x(t) is a solution of the initial value problem (4.2),
(4.5) on I, then, for t E I, x(t) must satisfy the integral equation

(4.7) x(t)
= J

f(r, x(r))dr +

Conversely, if x(t) is a continuously differentiable function on I satisfying
the integral equation (4.7), then x(t) must be a solution of the initial value
problem (4.2), (4.5). (Here we assume thatf(t, x) is a continuous function
of (t, x).)

There is a fundamental theorem of ordinary differential equations
which asserts the existence and uniqueness of solution of the initial value
problem (4.2), (4.5). The proof of this theorem consists of showing that
there is a unique solution of the integral equation (4.7) and consequently a
unique solution of the initial value problem (4.2), (4.5). Before stating the
theorem we must introduce some terminology and state the initial value
problem in more precise language.

Let (t0, x0) be a point in R2 and let f be a real valued function of two
variables t and x defined for all points (t, x) of a rectangle Q centered at (t0,
x0) and described by inequalities of the form

It—tol<a, Ix—xol<b
where 2a and 2b are the lengths of the sides of Q (see Fig. 4.2). The initial
value problem (4.2), (4.5) asks for a function x(t) defined for t in some
open interval I described by

(4.9) It—t01<h, O<h<a

18 IntroductIon to Partial Differential Equations

It= i,0f(r)dr + C

Fig. 4.1

(4.8)
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xo

Q x=x(t)

x0 —b

—
t0-a t0-h t0 t0+h t0+a

Fig. 4.2

such that x = x(t) satisfies the differential equation

(4.2') = f(t, x(t)), for t E I

and the initial condition

(4.5') x(t0) = x0.

In geometrical language the problem is to find a curve x = x(t) which
passes through the given point (t0, x0) (as required by the initial condition
(4.5)) and which at each of its points (t, x(t)) has slope given by the value
of the function f at that point (as required by the differential equation
(4.2)).

One of the conditions in the fundamental theorem that we state below
requires that the function f satisfy a Lipschitz condition with respect to x
in the rectangle Q. This means that there is a constant A > 0 such that

(4.10)
I
f(t, x1) — f(t, x2)

I
A — x2

for every pair of points (t, x1) and (t, x2) in Q. Note that the function f will
satisfy the Lipschitz condition (4.10) if DJ exists and is bounded in Q,
i.e., there is a constant M> 0 such that

(4.11)
I

D2f(t, x)
I

M for all (t, x) E Q.

This follows from the mean value theorem,

f(t, x1) — f(t, x2) = D2f(t, i)(x1 — x2)

where i is some number between x1 and x2. Taking the absolute values of
both sides,

f(t, Xi) - f(t, X2) = I
D2f(t, i)

I I
- X2

I

and since (t, i) E Q, (4.11) implies (4.10) with A = M.
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Theorem 4.1. Suppose that in some rectangle Q given by inequalities of
the form (4.8), the function f(t, x) is continuous and satisfies a Lipschitz
condition (4.10) with respect to x. Then there is an interval I given by an
inequality of the form (4.9) and a unique function x(t) defined for t E I,
such that x(t) E C1(I) and x = x(t) satisfies the differential equation (4.2')
and the initial condition (4.5').

It should be emphasized that the theorem guarantees the existence of
the solution only in some interval I about the point t0, and this interval
may be small. This is illustrated in the following example.

Example 4.1. Let f(t, x) = x2 and let Q be the rectangle given by

ItI<2, Ix—
so that (t0, x0) = (0, 1) and a = 2, b = 1. The function Iis continuous in Q,
and since

I
D2f(t,x)

I = I <4in Q,
fsatisfies the Lipschitz condition (4.10) with A = 4. Now, it is easy to see
that the unique solution to the initial value problem

x(O)=1

is given by

x=—1—t

and this solution exists only in the subinterval I given by I t < 1, of the
original interval I t I < 2.

We consider next a system of n first order ordinary differential equa-
tions in n unknowns of the form

(4.12) = f(t, x1, .. . , xx); i = 1, ..., n.

Here t denotes the independent variable and x1,. . . , the unknowns. An
initial value problem for the system (4.12) asks for n functions x1(t),

of the single variable t defined for t in some interval I centered at a
point t0 such that x1 = x1(t), . . . , = satisfy the equations (4.12) and
the initial conditions

(4.13) x1(t0) = 4, . . . , =

where x10,. . . , are the given initial values. In geometrical language the
problem is to find a curve C in defined parametrically by the equations

= x1(t), . . . , = t E I

such that C passes through a given point (x1° (as required by the
initial conditions (4.13)) and such that at each point of C a tangent vector
to Cis given by the vector (f(t, x1(t), . . . , . . . x1(t), . . . ,
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(as required by the differential equations (4.12)).
The fundamental theorem asserting the existence and uniqueness of

solution of the initial value problem (4.12), (4.13) is essentially the same as
Theorem 4.1. We need only extend the concepts of rectangle and Lip-
schitz condition to the case of several variables. Let Q be a box in
defined by the inequalities

(4.14) t—toI<a, lxi —41<b1
A function fit, x1 defined in Q is said to satisfy a Lipschitz
condition in Q with respect to the variables x1 if there exist
positive constants A1, A2 such that

f(t, . . •
, —f(t, . .

I

(4.15)
A — £. A — (2)

1 1 1 n n n

for all pairs of points (t, and (t, in Q.

Theorem 4.2. Suppose that in some box Q defined by inequalities of the
form (4.14), each of the functions 11 is continuous and satisfies a
Lipschitz condition (4.15) with respect to the variables x1, .. . , Then
there exists a unique set of functions x1(t), .. . , defined for t in some
interval I of the form (4.9) such that each function belongs to C'(l)
and

x1 = x1(t), . . . , =

satisfy the system of equations (4.12) for all t E land the initial conditions
(4.13).

The proofs of the theorems and further discussion of the topics of this
section may be found in the books of Coddington3 or Rabenstein.4

Problems

4.1. Find the general solution of the first order linear differential equa-
tion

dx
-a-- + p(t)x = q(t)

in some interval Iwhere p(t) and q(t) are continuous functions of t E
I. (Hint: If P(t) is an antiderivative of p(t) in I, then is an
integrating factor).

4.2. Find the general solution of each of the following linear equations in
the indicated intervals

dx 1

(a) t>O

(b)

dx
(c)
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dx
(d) + x = sint, — 00< t <00.

4.3. For each of the equations in Problem 4.2 solve the initial value
problem with initial condition x(1) = 2.

4.4. Find the general solution of each of the following equations

dx
(a)

dx x
(b)

(Hint: Use the method of separation of variables.)
4.5. Find the solution of the initial value problem

x(O)=1.

Describe the largest interval I on which the solution is defined.
4.6 (a) Find the general solution of the system of equations,

dx1 dx2
= x2, = —x1.

(b) Find the solution of the above system satisfying the initial
conditions

x1(O) = 1, x2(O) = 0.

Describe the largest interval I on which the solution is defined.
4.7. (a) Find the general solution of the system of equations

dx1 dx2
= x1x2, = —x1x2.

(b) Find the solution of the above system satisfying the initial
conditions

x1(O) = 1, x2(0) = 1.

Describe the largest interval I on which the solution is defined.
4.8. Let f(t, x1 be defined in a box Q given by the inequalities

(4.14) and suppose that the derivatives 3fl3x1 are
bounded in Q. Show thatf satisfies a Lipschitz condition (4.15) with
respect to x1 in Q.

4.9. Show that the function

f(t, x) =

does not satisfy a Lipschitz condition with respect to x in any
rectangle centered at the origin of the (t, x)-plane.

4.10. Consider the initial value problem
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x' =
x(O) = 0.

23

Show that for any nonnegative value of the constant c, the function

0,
x(t) =

(t — c)2

for t < C

for

is a solution of the problem. Thus, in any interval centered at t = 0
there are infinitely many solutions of the problem. Does this contra-
dict Theorem 4.1? Explain.
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CHkPTER II

Integral curves and surfaces
of vector fields

In this chapter we study methods for finding integral curves and sur-
faces of vector fields. The material of this chapter has important applica-
tions in many areas of mathematics, physics and engineering, but the
main reason for including it in this book is the essential role that it plays in
the study of quasi-linear first order partial differential equations presented
in Chapter III.

In Sections 1 and 2 we discuss methods for finding the integral curves of
a vector field by solving systems of ordinary differential equations. In
Section 3 we find the general solution of the partial differential equation

+ + = 0. In Section 4 we describe a method for finding an
integral surface of a vector field containing a given curve. Finally, in
Section 5 we apply the result of Section 3 to the study of solenoidal vector
fields and obtain a theorem which is useful in many areas of physics and
engineering. An application to plasma physics is also included in this
section.

1. Integral Curves of Vector Fields
Let

(1.1) V(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))

be a vector field defined in some domain of R3. In this book we will deal
only with vector fields V in domains fl in which the following two
conditions are satisfied:

(a) V is nonvanishing in fl; i.e., the component functions P, Q, R of V
do not vanish simultaneously at any point of fl,

(b) P, Q, R E C' (fl).

For the "constant" vector field
24
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(1.2) V = (1, 0, 0)

these conditions are satisfied in the domain fl consisting of the whole of
R3. For the "radial" vector field

(1.3) V=(x,y,z)
the conditions are satisfied in the domain CI consisting of R3 minus the
origin. For the vector field

(1.4) V = (y, —x, 0)

the conditions are satisfied in the domain fl consisting of R3 minus the z-
axis. For the vector field

(1.5) V = (xyz, ex+v+z)

the conditions are satisfied if fl is either one of the half-spaces z > 0 or
<0.
Definition 1.1. A curve C in fl is an integral curve of the vector field V

if V is tangent to C at each of its points.

Figures 1. 1, 1.2 and 1.3 show some integral curves of the vector fields
(1.2), (1.3) and (1.4), respectively. The integral curves of (1.2) are lines
parallel to the x-axis. The integral curves of (1.3) are rays emanating from
the origin. The integral curves of(1.4) are circles parallel to the (x,y)-plane
and centered on the z-axis.

In physics, an integral curve of a vector field is often called a field line.
If V is a force field, the integral curves of V are called lines of force.
Under the influence of a force field due to a magnet, iron filings group
themselves along the lines of force. If V is the velocity field of fluid flow,
the integral curves of V are called lines of flow. These are the paths of
motion of the fluid particles.

In the first two sections of this chapter we discuss methods for finding
the integral curves of a vector field V. We do this here because integral
curves of vector fields play an essential role in the study of first order
partial differential equations. Vector fields and their integral curves are
also important in many other areas of mathematics, physics and engineer-
ing.

With the vector field V = (P, Q, R) we associate the system of ordinary
differential equations,

(1.6) = P(x, y, z), = Q(x, y, z), = R(x, y, z).

A solution (x(t), y(t), z(t)) of (1.6), defined for t in some interval I, may
be regarded as a curve in fl. We will call this curve a solution curve of the
system (1.6). Obviously, every solution curve of the system (1.6) is an
integral curve of the vector field V. Conversely, it can be shown (see
Problem 1.9), that if C is an integral curve of V, then there is a parametric
representation
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Fig. 1.1

z

V

V = (x, y, z)
x

Fig. 1.2

x = x(t), y = y(t), z = z(t); t E I,

of C, such that (x(t), y(t), z(t)) is a solution of the system of equations
(1.6). Thus, every integral curve of V, if parametrized appropriately, is a
solution curve of the associated system of equations (1.6).

The integral curves of simple vector fields, such as those given by
equations (1.2) and (1.3), can sometimes be found by geometrical intui-
tion. However, for more complicated vector fields this is not always
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(y, —x, 0)

Fig. 1.3

possible. In any case, the integral curves of a vector field V = (P, Q, R)
can be found by considering these curves as solution curves of the
associated system of equations (1.6) and by solving this system.

Since the right hand sides of the system (1.6) do not depend on t, it is
possible to eliminate t completely and consider any two of the variablesx,
y, z as functions of the third. If, for example, P 0, then y and z may be
considered as functions of the independent variable x, and the system
(1.6) may be written in the form

(17)
dx P dx P

Similarly, if Q # 0 orR 0, the system (1.6) may be written in the form

dx_P dz_R
dy Q' dy Q

or

(19)
dz R' dz R'

respectively. In order to avoid distinguishing between dependent and
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independent variables, it is customary to write the equivalent systems
(1.7)—(1.9) in the form

dx_dy_dz'.
/ PQR

Although we will usually write the system (1.6) in the form (1.10), the
equivalent forms (1.7)—(1.9) should always be kept in mind.

The system of equations associated with the vector field (1.2) is

dxdydz
1__o_o•

The systems associated with the vector fields(1.3) and (1.4), respectively,
are

(1.12)
x y z

(1.13)
y —x 0

The zeroes that appear in the denominators should not be disturbing. For
example the zero appearing in the denominator in (1.13) simply means
that dz/dx = dz/dy = dz/dt = 0, and therefore a solution curve of (1.13)
must lie on a plane z = constant (see Fig. 1.3).

We will try to find the integral curves of a vector field V by considering
them as intersections of surfaces and representing them in the form

(1.14) u1(x, y, z) = c1, u2(x, y, z) = c2

As we saw in Chapter I, Section 3, if the functions u1 and u2 satisfy the
condition

(1.15) grad u1(x, y, z) x grad u2(x, y, z) 0, (x, y, z)E fl

then, for each pair of appropriate values of c1 and c2, equations (1.14)
represent a curve in fl. Geometrically, condition (1.15) means that grad u1
and grad u2 are not parallel at any point of fl.

Definition 1.2. Two functions u1 and u2 in C'ffl) which satisfy condi-
tion (1.15) will be called functionally independent in fl. (See Problem
1.10.)

Now, let C be a curve represented by equations (1.14). At each point of
C, grad u1 and grad u2 are normal to C (see Fig. 1.4). In order for C to be
an integral curve of V, at each point of C, V must be tangent to C and,
hence, normal to grad u1 and grad u2. It follows that in order for equations
(1.14) to represent integral curves of the vector field V in fl, the functions
u1 and u2 must satisfy the conditions

ax ay ax ay az
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Definition 1.3. A function u in C'(fl) is called a first integral of the
vector field V = (F, Q, R) (or of its associated system dxIP = dyIQ =
dz/R) in fl, if at each point of fl, V is orthogonal to grad u, i.e.

(1.16)
i3u 49uP—+ Q—+R -o in fl.
ax äy

Equation (1.16) is a partial differential equation in the unknown func-
tion u of three independent variables x, y, z. According to Definition 1.3,
any solution of the p.d.e. (1.16) is a first integral of V.

We now can prove the following basic theorem which describes the
integral curves of V in terms of two functionally independent first inte-
grals of V.

Theorem 1.1. Let u1 and u2 be any two functionally independent first
integrals of V in CI. Then the equations

(1.14) u1(x, y, z) = c1 , u2(x, y, z) = c2

describe the collection of all integral curves of V in fl.

Proof. The assumptions of the theorem mean that u1 and u2 satisfy
condition (1. 15) in CI and that each satisfies the p.d.e. (1.16) in fl. We have
already shown in Chapter I, Section 3, that condition (1.15) implies that
for appropriate values of c1 and c2, equations (1.14) represent a two-
parameter family of curves in fl. Each member C of this family is an
integral curve of V since V is tangent to C at each of its points (why?).
Now let C be any integral curve of V in ft We must show that C is given

Fig. 1.4
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by equations (1.14) for certain values of c1 and c2. Let (x0, Yo' z0) be any
point of C and let C' be the curve given by (1.14) with c1 = u1(x0, Yo' z0), c2
= u2(x0, Yo' z0). Then C and C' are integral curves of V passing through the
point (x0, Yo' z0), and, if parametrized appropriately, they are both solution
curves of the system (1.6). By the uniqueness part of Theorem 4.2 of
Chapter I we must have C' = C. The proof is complete.

It should be noted that, according to Theorem 1.1, the collection of all
integral curves of V is a two-parameter family of curves. Moreover, the
representation (1.14) of this two-parameter family of integral curves of V
is not unique. The functions u1 and u2 may be replaced by any other pair
of functionally independent first integrals of V in fl. The following theo-
rem shows that from any given first integrals of V we can obtain an infinite
number of new first integrals.

Theorem 1.2. (a) Iff(u) is a C1 function of a single variable u and if u(x,
y, z) is a first integral of V then w(x, y, z) = f(u(x, y, z)) is also a first
integral of V.

(b) If f(u, v) is a C' function of two variables u and v and if u(x, y, z)
and v(x, y, z) are any two first integrals of V then w(x, y, z) = f(u(x, y,
z), v(x, y, z)) is also a first integral of V.

We prove only (a) and leave (b) as an exercise. Using the chain rule, we
obtain

i9w äw äw t9u 9uP—+ Q—+R—-=Pf'--+Qf'—+Rf'—
ax .9y .9z .9x .9y .9z

+ + = 0
L ax ay äzi

where in the last equality we used the fact that u satisfies the p.d.e. (1.16).
We have shown that w also satisfies (1.16) and hence it is a first integral of
V.

According to Theorem 1.2, either of the functions u1 or u2 may be
replaced by a function f(u1, u2) in the equations (1.14) representing the
integral curves of V. Of course we must make sure that in the new
equations thus obtained, the functions involved are functionally independ-
ent.

Example 1.1. Let V be the vector field given by (1.2) and let CI = R3. A
first integral of V is a solution of the equation

(1.17) = 0.

Any function ofy and z only is a solution of this equation. For example,

u1=y, u2=z
are two solutions which are obviously functionally independent. The
integral curves of V are described by the equations

(1.18) y = c1, z = c2,



Integral Curves and Surfaces of Vector Fields 31

and are straight lines parallel to the x-axis (see Fig. 1.1). The functions y —
z and e are also functionally independent first integrals, and the integral
curves of V are also described by the equations

(1.19) y — z = c1 e = c2.

Of course, different values of c1 and c2 must be used in (1.18) and (1.19) in
order to get the same integral curve of V.

Example 1.2. Let V be the vector field given by equation (1.3) and let
CI be the octant x> 0, y> 0, z> 0. A first integral of V is a solution of the
equation

(1.20) + yuy + ZUz = 0.

It is easy to verify that the functions

y z
u1(x, y, z) = —, u2(x, y, z) = —

x x

are first integrals of V in fl. Moreover, they are functionally independent
in CI since they satisfy condition (1.15). Therefore, the integral curves of V
in CI are described by the equations

y z
(1.21) —=c1, —=c2.

x x

They are rays emanating from the origin (see Fig. 1.2) and a parametric
representation of them is

x=t, y=C1t, Z=C2t; t>O.
It is easy to check by direct computation that any function of u1 and (or) u2
is also a first integral of V. For example, iff(u) = u2 then

u(x, y, z) = f(u1(x, y, z)) = (Y)2

is a first integral of V. If f(u1, u2) = u12 — u22, then

— z2
u(x, y, z) = flu1(x, y, z), u2(x, y, z)) =

x2

is a first integral of V. Similarly

z yz x . fy\ fz\2
—,—,—,sin (—J,cos —
y x z \x/

are all first integrals of V.

Example 1.3. Let V be the vector field (1.4) and let fl be R3 minus the
z-axis. A first integral of V is a solution of the equation

Yt1x — = 0.

It is easy to verify that the functions
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u1(x, y, z) = x2 + y2, u2(x, y, z) = z

are two functionally independent first integrals of V. Therefore, the
integral curves of V in fl are given by

(1.22) x2+y2=c1, z=c2.
Equations (1.22) describe circles parallel to the (x, y)-plane and centered
on the z-axis (see Fig. 1.3).

We usually want to find the integral curves of a vector field V in the
largest possible domain fl in which the component functions P, Q, R
satisfy the basic assumptions (a) and (b) stated in the beginning of this
section. If we can find two functionally independent first integrals u1 and
u2 defined in the whole of fl, then the collection of integral curves of V in
fl is given by equations (1.14). However, this may not always be possible.
Frequently, we can find pairs of functionally independent first integrals of
V which are defined only in subdomains of fl. If u1 and u2 is such a pair
defined in the subdomain of fl then the integral curves of V in are
given by equations (1.14). In order to find the integral curves of V in the
whole of fl we may have to express fl as the union of (possibly overlap-
ping) subdomains. In each of these subdomains the integral curves of V
may be expressed by equations of the type (1.14) with different pairs of
first integrals being used in different subdomains. To illustrate this let us
consider the vector field V in Example 1.2. For this vector field, the
largest domain CI in which assumptions (a) and (b) are satisfied is R3 minus
the origin. In the subdomain of fl consisting of the half-space x> 0, the
integral curves of V are given by

y z
—=c1, —=c2.
x x

In the subdomain of CI consisting of the half-space z < 0 the integral
curves of V are given by

x y—=c1, —=c2.
z z

The student should be able to write down the pair of equations describing
the integral curves of (1.3) in any coordinate half-space.

Although Theorem 1.1 describes the integral curves of a vector field V
= (P, Q, R) in a domain fl in terms of two functionally independent first
integrals of V in fl, the theorem does not tell us whether such first
integrals always exist, or, if they do exist, how to find them. Since the
integral curves of V are solution curves of the associated system of
equations (1.10), it can be shown, using the existence theory for systems
of ordinary differential equations, that in a neighborhood of any point of fl
there always exist two functionally independent first integrals of V. Of
course this still does not tell us how to find these integrals. In the next
section we describe some methods for finding functionally independent
first integrals of V by solving the associated system of equations (1.10).
Actually, these methods yield equations (1.14) directly as consequences
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of the differential equations (1.10). This is illustrated in the following
example.

Example 1.4. Solve the system of equations

(1.12)
x y z

which is associated with the vector field (1.3). The first of these equations
is an ordinary differential equation in x and y and the general solution of
this equation is

(1.23) = c1.

The equation obtained by equating the first and last of the ratios in (1.12)
is an ordinary differential equation in x and z, and the general solution of
this equation is

(1.24) = c2.

We have thus obtained equations (1.21) describing the integral curves of
the vector field (1.3) (for x > 0) by solving the associated system of
equations (1.12).

The left hand sides of equations (1.23) and (1.24) are first integrals of
the vector field (1.3). In general, if the relation

(1.25) u(x, y, z) = c

holds as a consequence of the system of equations (1.10), then the
function u(x, y, z) is a first integral of V. To see this, take the differential
of (1.25) to obtain

3u au 9u
— dx + — dy + — dz = 0.
ax ay 9z

Now, in view of equations (1.10), it follows that u satisfies equation
(1.16).

Problems

1.1. Consider the "constant" vector field

V(x, y, z) = (1, 1, 1).

(a) Describe the integral curves of V using "geometrical intuition."
(b) Write down equation (1.16) for this vector field and guess

solutions of this equation to obtain two functionally independ-
ent first integrals of V. Write down equations (1.14) describing
the integral curves of V.

(c) Write down the system of ordinary differential equations associ-
ated with V and obtain the equations of the integral curves by
solving this system.
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1.2. Follow the instructions of Problem 1.1 for each of the following
vector fields

(a) V = (1, 1, 0), (b) V = (1, —1, 0).

1.3. Find the integral curves of the vector fields (1.2) and (1.4) by
solving the systems of ordinary differential equations associated
with the vector fields.

1.4. Find the integral curves of the following vector fields:

(a) V = (0, z, —y) (b) V = (y3, —x3, 0) (c) V = (1, 3x2, 0).

1.5. Verify directly (without using the theory developed in this section)
that equations (1.18) and (1.19) describe the same two-parameter
family of curves in R3.

1.6. If V and flare as in Example 1.2, show that yzlx2 and (y2 — z2)1x2 are

functionally independent first integrals of V in fl. Verify directly
that the equations

yz y2—z2
2x x

and equations (1.21) describe the same two-parameter family of
curves in fl.

1.7. Let u(x, y, z) be a first integral of V and let C be an integral curve of
V given by

x=x(t), y=y(t), z=z(t); tEl.
Show that C must lie on some level surface of u. [Hint: Compute
dldt [u(x(t), y(t), z(t))]].

1.8. Let V be a vector field defined in fl and let f be a nonvanishing
function in C1ffl). Show that the vector fields V and JV have the
same integral curves in fl.

1.9. Let C be an integral curve of the vector field V = (F, Q, R) and
suppose that C is given parametrically by the equations,

x = x(t), y = y(t), z = z(t); t E I
where the functions x(t), y(t), z(t) are in C1(1) and the tangent vector

T(t) — (dx(t) dy(t) dz(t)

— \ dt ' dt ' dt

never vanishes for t E I.
(a) Show that there is a function in C1(I) such that for every t E

I, 0 and

V(x(t), y(t), z(t)) =

(b) Let t = tfr) be a solution of the differential equation

dt— =
dr
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where r varies over some interval I' as t varies over I. Set

i(r) = x(t(T)), j(r) = y(t(T)), 2(r) = z(t(T)).

Show that in terms of the new parametric representation

x = i(r), y = j(r), z = r E I',
the curve C is a solution curve of the system of equations
associated with V,

dr dT dT

1.10. The definition of functional independence in terms of condition
(1.15) does not exactly coincide with the usual definition of func-
tional independence given in books on advanced calculus.
(a) Look up the definition of functional independence in an ad-

vanced calculus text.
(b) Show that two functions that are functionally independent ac-

cording to Definition 1.2 are also functionally independent ac-
cording to the definition found in (a).

1.11. Prove part (b) of Theorem 1.2.

2. Methods of Solution of dx/P = dyIQ = dz/R
In this section we describe methods for finding the integral curves of a

vector field V = (F, Q, R) in a domain fl of R3 by solving the associated
system of equations

dxdydz
P - QR

We always assume that V is nonvanishing and C1 in fl. Since the integral
curves of V and the solution curves of (2.1) are the same (if parametrized
appropriately), we know from the theory developed in the previous
section that the collection of solution curves of (2.1) in fl is given by

(2.2) u1(x, y, z) = c1, u2(x, y, z) = c2

where u1 and u2 are any two functionally independent first integrals of
(2.1) in ft. For this reason we will refer to equations (2.2) as the general
solution of the system (2.1). Recall that a function u E C'(fl) is a first
integral of (2.1) in ft if it satisfies the p.d.e.

(2.3)
ax ay t9Z

in ft Moreover, two functions u1 and u2 in C'(CL) are functionally inde-
pendent in fl if their gradients are never parallel in fl, i.e.

(2.4) grad u1 x grad u2 0, in fl.

It is sometimes possible to find solutions of equation (2.3) by inspec-
tion. However, this is usually very difficult if not impossible. In practice
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we try to find the relations (2.2) as consequences of the differential
equations (2.1). The difficulty with equations (2.1) is that, in general, each
equation involves all three variables x, y, z. If one of the variables were
missing from one of the equations then that equation would be an ordinary
differential equation in two variables and we could try to solve this
equation by a method such as the method of separation of variables.

Suppose for example that P and Q are functions of x and y only. Then
the differential equation

(25)
dx = dy

P(x, y) Q(x, y)

is an ordinary differential equation where either x or y may be considered
as the independent variable. If we can find the general solution of(2.5) in
the form

(2.6) u1(x, y) = c1

then it is easy to check that u1 is a first integral of(2. 1) (see Problem 2.1).

Example 2.1. Consider the system

(27)
dxdy dz

x — y

The first equation does not involve z and can be solved immediately,

(2.8) =

The function u1(x, y, z) = y/x is a first integral of the system (2.7) since it
satisfies the p.d.e.

(2.9) + yuy + xy(z2 + = 0.

If one first integral u1 of (2.1)is already known, then we can attempt to
find another first integral by the following procedure: Using the relation
u1(x, y, z) = c1 we try to eliminate one of the variables from one of the
equations (2.1). We then try to solve the resulting ordinary differential
equation in the remaining two variables.

Example 2.1 (continued). Using (2.8) we can eliminate y from the
equation

dx dz

x xy(z2 + 1)

to obtain

dx dz

x — xc1x(z2 + 1)

The solution of this equation is

(2.10) c1 = arc tan z + c2.
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Substituting for c1 from (2.8) we get

(2.11) — arc tan z = c2.

It is easy to check that the function

u2(x, y, z) = xy —arc tan z

is a first integral of (2.7) since it satisfies the p.d.e. (2.9). Now,

f y 1 \ fyx 1

grad u1 = —, grad u2 =
— +

which are never parallel. Hence, u1 and u2 are functionally independent
first integrals of(2.7) in any domain where they are both defined. Since u1
is defined for x # 0 and u2 is defined everywhere, equations (2.8) and
(2.11) describe the solution curves of (2.7) in the domain x > 0 and in the
domain x < 0.

Example 2.2. Solve the system

(212)
ydx dydz

y2+z2 xz xy•

After canceling x, the last equation is an ordinary differential equation in y
and z,

dy_ dz

z y•
The general solution of this equation is

(2.13) y2 + z2 = c1.

The function u1 = y2 + z2 is a first integral of (2.12) since it satisfies the
p.d.e.

2 + z2
(2.14) + — XYUz = 0.

y

In order to find another first integral we use (2.13) to eliminate the
variable y from the equation

ydx — dz

xy

to obtain

(c1 — z2)dx = — dz

Cl

After separation of variables this equation becomes

Clxdx= dz.
z2 — c1
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We now use partial fraction decomposition on the right side,

dz dzxdx=—t —
2 z+\'c

and after integration of this equation we obtain

2x j+c2.
+ zi

Again using equation (2.13), we can eliminate c1 to get

(y2 4 z2)"2 — z
(2.15) x2 — + z2)"2 log

+ z2)"2 + z]
= C2•

It is left as an exercise to check that the function u2 defined by the left
hand side of this equation satisfies the p.d.e. (2.14) and that u1 and u2 are
functionally independent in the domain y > 0.

Let us consider now the more difficult case in which none of the
equations in (2.1) is an ordinary differential equation involving two varia-
bles only. In this case we try to introduce new variables and to derive
from (2.1) a new differential equation involving only two of these new
variables. In order to understand the procedure let us recall the paramet-
tic form of (2.1),

(216)
dy dzR

dt ' dt

If a, b, c are any three constants, then as a consequence of (2. 16) we also
have the equation

d
(2.17) (ax + by + cz) = aP + bQ + cR.

The nonparametric form of the four equations (2.16) and (2.17) is

(218)
dxdydzd(ax+by+cz)
PQRaP+bQ+cR

Since a, b, c are arbitrary constants, (2.18) actually represents an infinite
collection of equations which are all consequences of the original equa-
tions (2.1). For example we have

d(x + y +z) — dx
P + Q + R - P

and

d(x + y) — d(x — z)

P+Q - P-R
Thus we can add or subtract numerators and denominators in the ratios of
(2.1) and the resulting new ratio is also equal to the original ones.
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Suppose now that we can find constants a, b, c and a', b', c' such that
the equation

d(ax+by+cz)d(a'x+b'y+c'z)
aP+bQ+cR a'P+b'Q+c'R

is an ordinary differential equation involving only the new variables X =
ax + by + cz, X' = a'x + b'y + c'z. Then we can try to find the general
solution of this equation,

u(X, X') = c1.

Consequently the function u(ax + by + cz, a'x + b'y + c'z) would be a
first integral of (2.1).

Example 2.3. Solve the system

(219) y+z y x—y
Adding the numerators and denominators in the first and last ratio we
obtain the ratio d(x + z)/(x + z). Equating this to the middle ratio above
we obtain the equation

d(x + z) — dy

x+z — y
which is an ordinary differential equation in the two variables X = x + z

and y. The general solution of this equation is

x
— = Cl.
y

Hence

(2.20) = c1.
y

The function u1(x, y, z) = (x + z)/y is a first integral of (2.19) since it
satisfies the p.d.e.

(2.21) (y + + yuy + (x — = 0.

It is left as an exercise to obtain another first integral using substitution
from equation (2.20). Here we find another first integral as follows.
Subtracting the numerators and denominators in the first two ratios in
(2.19) and equating the result to the last ratio, we obtain the equation

d(x—y) dz

z x—y
This is an ordinary differential equation in Y = x — y and z, and its general
solution is

Y2 — z2 = C2.

Hence
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(2.22) (x — y)2 — = c2.

The function u2 = (x — y)2 — z2 is a first integral of (2.19) since it satisfies
the p.d.e. (2.21). To check functional independence we compute

/1 x+z 1\
grad u1 = — ——, — j, grad u2 = (2(x — y), — 2(x — y), —2z)

\y y2 y!
and

grad u1 X grad u2

2(x—y+z) 2(x—y+z)(x--y)
\ y2 y ' y ' y2

The second component is never zero if x — y + z 0. Hence u1 and u2 are
two functionally independent first integrals of(2. 19) in the domain defined
by the inequalities

x—y+z>O, y>O.
The student should sketch this domain.

Let us consider now the possibility of allowing the multipliers a, b, c in
the above method to be functions of x, y, z. In this case equation (2.17) is
not a consequence of equations (2.16) and it may not be correct (why?).
Suppose, however, that we can find functions a(x, y, z), b(x, y, z), c(x, y,
z) and a function X(x, y, z) such that

(2.23) dX = adx + bdy + cdz.

Then as a consequence of equations (2.16) we have the equation

dX
(2.24)

The nonparametric form of equations (2.16) and (2.24) is

(225)
dx_dy_dz_ dX

• PQ R aP+bQ+cR
If one of the equations in (2.25) involves only two of the variables x, y, z
and X, we can proceed to solve it as an ordinary differential equation.

Example 2.4. Solve the system

(226)
dx — dy — dz

•

Since

d log (xyz) = dx + +
x y z

we can take
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X=log(xyz), a=!, b=1, c=1.
x y z

We then have aP + bQ + cR = 0 and

dx — dy — dz — d log (xyz)
x(y-z)y(z-x) z(x-y) 0

Hence

xyz = C1

and the function u1 = xyz is a first integral of (2.26) as can be easily
checked.

Problems

2.1. Show that if (2.6) gives the general solution of (2.5) then u1(x, y) is a
first integral of(2.1).

2.2. Find the solution curve of the system (2.7) passing through the point
(1, 1, 0).

2.3. Find the general solution of (2.7) in the domain y > 0.
2.4. Verify that the function u2 defined by the left hand side of equation

(2.15) satisfies the p.d.e. (2.14) and that the functions u1 and u2 of
Example 2.2 are functionally independent in the domain y > 0.

2.5. Use (2.20) to obtain another first integral for the system (2.19).
2.6. Find another functionally independent first integral in the Example

2.4.
2.7. Find the integral curves of the following vector fields

(a) V = (log (y + z), 1, —1) (b) V = (x2, y2, z(x + y)).

2.8. Find the general solution of the following systems

(a) = = (b) =
= dz

y—z z—x x—y yz —xz

3. The General Solution of + + = 0

In this section we find the general solution, i.e., the collection of all
solutions, of the partial differential equation

au au
P(x, y, z) — + Q(x, y, z) — + R(x, y, z) — = 0

ax ay az

in some domain fl of R3. We assume that the functions P, Q, R belong to
and do not vanish simultaneously at any point of fl. A function u(x,

y, z) in C'(fl) is a solution of the p.d.e. (3.1) in fl if substitution of u(x, y, z)
for u into (3.1) yields an equation in x, y, z which is satisfied identically ina

In Section 1, any solution of equation (3.1) in fl was called a first
integral of the vector field V = (P, Q, R) or of the associated system of
ordinary differential equations
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.dxdydz
V.) PQR
In Section 2 we described some methods for finding solutions of (3.1) by
manipulation and integration of (3.2). The following theorem is a restate-
ment of Theorem 1.2.

Theorem 3.1. Let u1 and u2 be any two solutions of (3.1) in ft and let
F(u1, u2) be any C' function of two variables. Then

(3.3) u(x, y, z) = F(u1(x, y, z), u2(x, y, z))

is also a solution of (3.1) in if

The following theorem asserts that if u1 and u2 are any two functionally
independent solutions of (3.1) in fl (he., u1, u2 satisfy condition (1.15))
then every solution of (3.1) has the form (3.3) near any point of fl. More
precisely,

Theorem 3.2. Let u1 and u2 be any two given functionally independent
solutions of(3.1) in and let u be any solution of(3.1) in fl. Let (x0, Yo' z0)
be any point of fl. Then there is a neighborhood U of (xo, z0), U C fl,
and a C' function F(u,, u2) of two variables such that

u(x, y, z) = F(u1(x, y, z), u2(x, y, z)), for (x, y, z) E U.

Recall that a neighborhood of (x0, Yo, z0) is any open set containing (x0,
Yo, z0). In Theorem 3.2 the size of U is not specified. U may be very small
or it may be the whole of the domain fl.

Roughly, Theorems 3.1 and 3.2 say that the general solution of(3.1) is
given by

u = F(u1, u2)

where u1 and u2 are any two fixed functionally independent solutions of
(3.1) and F is an arbitrary C1 function of two variables. The general
solution of an ordinary differential equation of the first order involves an
arbitrary constant. In contrast we see here that the general solution of the
first order partial differential equation (3.1) involves an arbitrary function.

Example 3.1. Consider the p.d.e.

+ + ZUz = 0

in the domain x > 0. In this domain the functions u1 = y/x and u2 = zix are
functionally independent solutions of this equation (see Example 1.2).
The general solution of the equation is

fy z
u(x, y, z) =

F is an arbitrary C1 function of two variables.

Proof of Theorem 3.2. Since u, u1, u2 are solutions of(3. 1) in fl we must
have at every point of
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auP— + Q— + R— = 0
ay

+ + = 0
ay az

+ + = 0.
ax ay az

This set of equations forms a linear system of homogeneous equations in
P, Q, R. Since (P, Q, R) * (0, 0, 0) at every point of fl the determinant of
the coefficients of the system must vanish at every point of fl,

au au
3x 3y 3z

au1 au1 ati1— — — =0, in IL
ax ay az

au2 au2 t3u2

ax 3y 3z

This determinant is of course the Jacobian of u, u1, u2 with respect to x, y,
z. Hence

3(u, u1, u2)———=0 in IL.
3(x, y, z)

Now, the assumption that u1 and u2 are functionally independent in fl
means that at every point of fl at least one of the Jacobians

a(u1, u2) a(u1, u2) 3(u1, u2)

a(x, y) ' a(x, z) ' a(y, z)

is different from zero. According to a theorem of advanced calculus which
is based on the Implicit Function Theorem (see Taylor,1 Section 9.6,
Theorem V and its generalization to n = 3 at the end of the section), the
last two conditions on the Jacobians imply the conclusion of the theorem.
The proof is complete.

Problems

3.1. Find the general solution of each of the following equations. Refer to
previous examples and problems.

(a) = 0

(b) — = 0

(c) + = 0

(d) + y2uy + z(x + Y)Uz = 0.

3.2. Find the general solution of each of the following equations. Refer to
the examples of Section 2.
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(a) + + xy(z2 + = 0

(b) + + — XYUz = 0

(c) (y + + yuy + (x — y)Uz = 0

3.3. Extension to n dimensions. Let ft be a domain in with x = (x1,
denoting a point of ft, and let

(3.4) V(x) = (P1(x), . .., x E fl
be a nonvanishing C' vector field in ft. A curve C is an integral curve
of V, if V is tangent to C at each of its points. The integral curves of
V, if parametrized appropriately, are the solution curves of the
associated system of ordinary differential equations

dx2

P,(x) P2(x)

A function u E C'(ft) is called a first integral of V (or of the system
(3.5)) in ft if u is a solution of the p.d.e.

(3.6) + + = 0, in fl.

The first integrals u,(x), . .., of V are said to be functionally
independent in ft if grad u1(x), .. . ,grad are linearly independ-
ent at every point x E ft (n—i) functionally independent first
integrals of V can be found by solving the system of o.d.e.'s (3.5).
(a) Prove the extension of Theorem 1.1: The (n— 1)-parameter family

of integral curves of V in ft is described by the equations

(3.7) u,(x) = c,, . . ., =

where u,, . .., are any (n — 1) functionally independent first
integrals of V in fl.

(b) State and prove the extension of Theorem 3.2 which briefly says
that the general solution of the p.d.e. (3.6) is given by

u(x) = F(u,(x), ...,
where F is a C' function of(n — i) variables and u,, . . . , are
any fixed (n— i) functionally independent first integrals of V.

3.4. Find the general solution of each of the equations

(a) = 0 (n arbitrary).

(b) + + + = 0 (n = 4).

4. Construction of an Integral Surface of a Vector Field
Containing a Given Curve

An integral surface of a vector field V = (P, Q, R) is a surface S such
that V is tangent to S at each of its points. We will use the following more
precise definition.
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Definition 4.1. A surface S in a domain of R3 is an integral surface of
the vector field V if S is a level surface of a first integral of V; i.e., S is
described by an equation of the form

u(x, y, z) = c

where u is a solution of the equation

(4.2) + + = 0

in fl such that grad u * 0 in ft

Equation (4.2) means that at each point of the surface S given by
equation (4.1), V is tangent to S. Note that according to Definition 4.1, an
integral surface of V is always a member of a one-parameter family of
integral surfaces of V given by equation (4.1) with c being considered a
parameter. We will also call an integral surface of V a solution surface of
equation (4.2) since it is a level surface of a solution of this equation.

The plane described by the equation y/x = c is an integral surface of the
vector field V = (x, y, z). The cylinder x2 + y2 = c is an integral surface of
V = (y, —x, 0).

In this section we will show that the integral surfaces of V are generated
by the integral curves of V. We will then describe a method which uses
this fact for constructing an integral surface of V passing through a given
curve. This method will be used in Chapter III to solve the initial value
problem for a first order quasi-linear partial differential equation.

We first prove that since V is tangent to its integral surfaces and integral
curves, the integral surfaces of V are generated by its integral curves, or,
equivalently, the solution surfaces of equation (4.2) are generated by the
solution curves of the associated system

(43\ dxdydz
P - Q - R

This last statement summarizes the content of the following theorem.

Theorem 4.1. If S is a solution surface of (4.2) in then for every
point of S the solution curve of(4.3) passing through that point lies on S.
Conversely, if u is a C' function in and if at each point (x0, Yo, z0) E
the solution curve of (4.3) passing through (x0, Yo' z0) lies on the level
surface of u passing through (x0, Yo, z0), then u is a solution of (4.2) in
(and hence the level surfaces of u are solution surfaces of (4.2)).

Proof. For the first part of the theorem, letS be given by the equation

u(x, y, z) = c

where u is a solution of(4.2) in fl, and let (x0, Yo' z0) be a point of S. Then

u(x0, Yo' z0) = c.

Let C be a solution curve of(4.3) given parametrically by the equations

x = x(t), y = y(t), z = z(t); t E I
and passing through the point (x0, Yo' z0). Then for some t0 E I,
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= x(t0), Yo = y(t0), z0 = z(t0)

and hence

u(x(t0), y(t0), z(t0)) = c.

Now,

d 3udy 3udz
— u(x(t), y(t), z(t)) = + —— +
dt 3xdt aydt 3zdt

= — P + — Q + — R = 0.
ax ay az

In the first equality we used the chain rule, in the second equality we used
the fact that C is a solution curve of (4.3) and in the last equality we used
the fact that u is a solution of (4.2). It follows that the function u(x(t), y(t),
z(t)) is constant, and since its value at t = t0 is c, we must have

u(x(t), y(t), z(t)) = c, t E I.

This means that C lies on S. For the second part of the theorem, the
assumptions on u mean that at each point (xo, Yo' z0) E fl, the vector V
which is tangent to the solution curve of(4.3) passing through (xo, Yo' z0) is
also tangent to the level surface of u passing through (x0, Yo, z0). Hence, at
every point of fl, grad u must be orthogonal to V, or

3u
P — + Q -- + R — = 0.

ax 3y az

This means that u is a solution of (4.2) in fl. The proof of the theorem is
complete.

Let us now consider the problem of constructing an integral surface S
of V passing through a given curve C in fl. Since every integral surface of
V is generated by integral curves of V we can try to construct S as follows.
Suppose first that V is nowhere tangent to C. Then through each point of
C construct the unique integral curve of V passing through that point. The
totality of these curves forms the desired integral surface S (see Fig. 4.1).

Suppose on the other hand that V is tangent to C at every one of its
points; in other words, suppose that C is an integral curve of V. Then
every integral curve of V passing through any point of C coincides with C.
Hence, in this case the integral curves of V passing through points of C
generate nothing more than the curve C itself (see Fig. 4.2(a)). Neverthe-
less, in this case we can construct infinitely many integral surfaces of V
containing the curve C. In fact, let C' be any curve intersecting C and
such that V is nowhere tangent to C'. Let 5' be the integral surface of V
generated by the integral curves of V passing through points of C'. Since
S' contains the intersection of C with C', 5' must contain the whole of C
(why?). Since we can draw infinitely many curves C' intersecting C, this
procedure yields infinitely many integral surfaces of V all of which
contain the curve C (see Fig. 4.2(b)).

Obviously, the above arguments, which are based on geometric intui-
tion, need to be made precise. We do this in Theorems 4.2 and 4.3 below.
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In the proofs of these theorems we actually describe methods for finding
the equation(s) of the integral surface(s) of V containing a given curve.
Before stating and proving these theorems, we discuss a particularly
simple example.

Example 4.1. Consider the vector field V = (1, 0, 0). The correspond-
ing equation (4.2) is

(4.4) ux = 0

and the associated system of equations is

(4.5)
dx dy dz

1 — 0 — O•

The integral curves of V are given by

y=c1, z=c2
and they are lines parallel to the x-axis. Suppose first that the curve C lies
on the x = 0 plane and is given by the equations

(4.6) f(y,z)=0, x=0.
Then the cylindrical surface S given by

(4.7) fly, z) = 0

is the integral surface of V containing the curve C. Next, suppose that C is
an integral curve of V given by

(4.8) Y = Yo' Z = Z0.

V

C

Fig. 4.1
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(a)

Fig. 4.2

Let C' be any curve on the x = 0 plane passing through the point (0, Yo'
z0). Then C' is given by equations of the form (4.6) with the condition f(y0,
z0) = 0. It is easy to see that the surface S' given by equation (4.7) is an
integral surface of V containing the curve (4.8). In fact, any surface given
by an equation of the form (4.7), with the functionf subject only to the
condition f(Yo, z0) = 0, is an integral surface of V containing the curve
(4.8).

We now formulate and prove the theorems. Let the given curve C in fl
be described parametrically by the equations

(4.9) x = x0(t), y = y0(t), z = z0(t); t E I

where the functions xo(t), y0(t), z0(t) belong to C'(J) and their derivatives
do not vanish simultaneously on I. Let (x0, Yo, z0) be a point of C
corresponding to t = t0 E I.

Theorem 4.2. Suppose that V = (P, Q, R) is not tangent to C at (x0, Yo'
z0). Then, in some neighborhood Yo' z0), there is a unique integral
surface of V containing the part of C in fl0.

Note that this is a "local" theorem since it asserts the existence of the
desired integral surface only in a neighborhood of (x0, Yo, z0). The
theorem does not specify the size of the neighborhood It may be a
very small open set containing (xo, Yo' z0) or it may be the whole domain
fl. Note also that the assumption of the theorem that V is not tangent to C
at the point (x0, Yo' z0) implies that V is not tangent to C at points of C near
(x0, Yo, z0) (i.e., at every point of C contained in some neighborhood of(x0,
Yo' z0)). This follows from our assumption that both V and the tangent
vector to C vary continuously.

Proof of Theorem 4.2. Let u1 and u2 be two functionally independent
first integrals of V defined in some neighborhood of(x0, Yo' z0). Let U1 and
U2 be functions of t defined for t near t0 by the equations

(4.10) U1 = u1(x0(t), y0(t), z0(t)), U2 = u2(xo(t), y0(t), z0(t)).

The assumption that V is not tangent to C at (x0, Yo' z0) implies that near
(t0, U1(t0), U2(t0)) we can eliminate t between equations (4.10) and obtain a

(b)
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relation between U1 and U2. To see this let us compute the derivatives of
U1 and U2 at t = to,

dtJ1 I dy0 dz0
—a-—

= grad u1(x0, Yo'
tto tto

dtJ2 fdx0 dy0 dz0
= grad u2(x0, Yo' z0)

t=to t=to

Ifboth of these derivatives were zero, then the tangent to C at (x0, Yo' z0)
would be parallel to the (non-zero) vector grad u1(x0, Yo, z0) x grad u2(x0,
Yo' z0). Since V(x0, Yo' z0) is also parallel to this vector, it would follow that
V is tangent to C at (x0, Yo' z0), contradicting the assumption of the
theorem. Hence, at least one of the derivatives dU1/dt or dU2/dt is not
equal to zero at t = t0. Suppose for example that 0. Then we
can solve the first of equations (4.10) for t and substitute in the second to
obtain a relation of the form

U2 — flU1) = 0

wheref is a C' function defined near U1(t0). Now the equation

(4.12) u2(x, y, z) — f(u,(x, y, z)) = 0

describes the equation of the desired integral surface. In fact, the left-
hand side of (4.12) is defined in a neighborhood of (x0, Yo' z0) and is a
solution of (4.2) in flu. Moreover, it follows from (4.10) and (4.11) that the
surface (4.12) contains the part of C in fl0.

We do not give here a precise proof of the uniqueness part of Theorem
4.2. This is intuitively obvious from the fact that every integral curve
passing through a point of C must lie on every integral surface of V
containing C. Since V is not tangent to C near (x0, Yo' z0) the integral
curves of V passing through C generate a surface near (x0, Yo' z0). Any two
integral surfaces of V containing C must also contain this surface and
hence they must coincide (at least in a neighborhood of (x0, Yo' z0)).

Example 4.2. Find the integral surface of V = (x, y, z) containing the
curve C given by

(4.13) y=x+1, z=x2; x>0.
First we express (4.13) in parametric form,

(4.14) x=t, y=t+1, z=t2; t>0.
The tangent to Cis (1, 1, 2t) and V = (x, y, z) = (t, t + 1, t2) on C. Hence V
is nowhere tangent to C and we can try to solve the problem in a
neighborhood of any point of C.

The functions u1 = y/x and u2 = z/x are two functionally independent
first integrals of V defined in the domain x > 0 containing the curve C.
Now,

U2=t
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and eliminating t we obtain

— U1 1

=

Substituting u1 for U1 and u2 for U2 in this equation we obtain the equation
of the desired integral surface

(4.15)

x

That equation (4.15) describes an integral surface of V is obvious, since
the left hand side of (4.15) is a first integral of V (it is a function of the first
integrals u1 and u2). To verify that the surface described by (4.15) contains
the curve C, we substitute (4.14) into (4.15) and check that the result is an
identity in t. Indeed, we get

t2 1--

Note that (4.15) describes the desired integral surface of V in the domain
defined by the inequalities x > 0, y > x.

Let us consider now the case in which the given curve C is an integral
curve of the vector field V.

Theorem 4.3. Suppose that V = (P, Q, R) is tangent to C at every one
of its points contained in a neighborhood of a point (x0, Yo, z0) E C.
Then in some neighborhood C of (x0, Yo' z0) there are infinitely
many integral surfaces of V containing the part of C in fly.

Proof. Let u1 and u2 be two functionally independent first integrals of V
defined in a neighborhood C of (x0, Yo' z0). Since the part of C in
is an integral curve of V the functions u1 and u2 must be constant on it.
Hence on C fl we have

(4.16)
u1(x, y, z) = c1 = u1(x0, Yo' z0),

u2(x, y, z) = c2 = u2(x0, Yo' z0).

Now let F(u1, u2) be any C' function of two variables such that

(4.17) F(c1, c2) = 0.

Then the equation

(4.18) F(u1(x, y, z), u2(x, y, z)) = 0

is the equation of an integral surface of V in containing C fl (why?).
Since F can be chosen arbitrarily, subject only to the condition (4.17), the
proof of the theorem is complete.

Example 4.3. Find the integral surfaces of V = (x, y, z) containing the
half-line
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(4.19) x=y=z, x>O.
Obviously this line is an integral curve of V. We use again the first
integrals u1 = y/x, u2 = z/x. On the half line (4.19), u1 = 1 and u2 = 1. If
F(u1, u2) is any C' function of two variables such that F(1, 1) = 0, then

is the equation of an integral surface of V containing the half-line (4.19).
For example, if we take F(u,, u2) = u, — u2 or F(u1, u2) = u, — u22 or F(u,,

u2) = cos (! we obtain the integral surfaces

all of which contain the half-line (4.19).

Problems

4.1. Find the integral surface of the vector field V containing the given
curve C.

(a) V = (1, 1, z). C:x = t, y = 0, z = sin t; —00 <t < 00

(b) V=(x, —y,O). C:x=t,y=t,z =t2;O<t<oo
(c) V= (y—z,z —x,x—y). C:x=t,y= 2t,z = O;O<t<oo
(d) V= (y, —x,2xyz). C:x=t,y=t,z =t2;O<t<oo.

4.2 In the following problems verify that the curve C is an integral curve
of V and derive the formula for the infinitely many integral surfaces of
V containing C.

(a) V = (1, 1, z). C:x = t, y = 1 + t, z = et; 0 <t < 00

(b) V = (xz,yz, —xy). C:x=t,y= —t,z =t;0<t<00.

5. Applications to Plasma Physics and to Solenoidal Vector
Fields

We present in this section two applications of the results of this
chapter. The first is in plasma physics, the study of which has been
stimulated in recent years by the possibility of thermonuclear reactors.
The application consists of finding the general solution of a special case of
the Boltzmann equation using the methods of this chapter. The second
application is a proof of an important result concerning solenoidal vector
fields, namely that such fields can be derived from vector potentials. The
proof of this result provides a method for the determination of a vector
potential for a given solenoidal vector field.

Application to Plasma Physics

The word "plasma" is used in physics to describe an ionized gas with a
sufficiently high density so that the forces exerted by the gas particles on
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each other are not negligible in comparison with the forces exerted on the
particles by external electromagnetic fields. The great radiation belts of
the earth (the Van Allen belts) and streams of charged particles emitted by
the sun are two examples of plasmas in nature. In the laboratory, plasmas
occur when electricity is discharged through gases. In the last several
years, the study of plasma physics has been stimulated by the possibility
of controlled thermonuclear reactors. A thermonuclear reactor would
make use of a gas at extremely high temperatures. At these temperatures
the gas is fully ionized and is therefore a plasma. The main problem of
thermonuclear reactors is how to contain the plasma. A material con-
tainer cannot be used since its walls would be instantly vaporized. Instead
it has been suggested that the plasma may be contained by a magnetic
field. Hopefully, the study of plasma physics may lead to the successful
design of such a "magnetic bottle."

The basic equation of plasma physics is known as the Boltzmann
equation. It is a complicated equation, the understanding of which re-
quires a considerable background in physics. The interested student may
look at the book of Longmire.2 From Longmire we take the following
special case of the Boltzmann equation which is used in the study of a
problem known as a static boundary-layer problem,

I v2 d'q d4A af V1 d'q 3f
(5.1) my1 — + e (—— — —) — — e ——— = 0.

ax \c dx dxi av1 c dx av2

In equation (5.1) f is the unknown function of the three independent
variables x, v1 and v2. The functions 4 and are given functions of the
variable x only, while m, e and c are constants. The partial differential
equation (5.1) is an equation of the form (3.1). The associated system of
o.d.e.'s is

(52)
dx dv1 = dv2

my1 fv2 d71 d4\ v1ek_T-T) -e---7-

The equality of the first and third ratios (after canceling v1) is an o.d.e. in x
and v2 which yields the first integral

e
(5.3) = my2 +—q(x).

C

Multiplying the numerators and denominators of the second ratio in (5.2)
by 2v1 and of the third ratio by 2v2 and adding the numerators and
denominators of the resulting ratios yields the ratio

(5.4)
+

d4
—2ev1—

dx

which is also equal to the ratios (5.2). The equality of the ratio (5.4) with
the first ratio in (5.2) (after canceling v1) is an o.d.e. in the variables x and
(v12 + v22) which yields the first integral
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(5.5) 12 = + +

Obviously, f1 and f2 are functionally independent and, according to
tion 3, the general solution of (5.1)is given by

e 1

(5.6) f(x, v1, v2) = F(mv2 + — — + +
c 2

where F(f1, 12) is an arbitrary function of two variables. It turns out that
the first integrals 11 and f2 have physical meaning; 12 is the energy of a
particle of mass m and f1 is its canonical momentum. Moreover, the pair
of equations

f1=c1, f2=c2
determine the trajectory of the particle.

Solenoidal Vector Fields

Let V = (P, Q, R) be a vector field defined in some domain fl in R3,
with F, Q and R belonging to C'(fl). The divergence of V, written div V, is
the function defined in fl by

äP äQ aR
div V = — + — + —.

3x .9y 3z

V is said to be solenoidal in fl if

div V = 0 in fl.

The curl of V, written curl V, is the vector field defined in fl by

— kay .9z ' 3z 3x' .9x t3y

The following theorem finds frequent application in many areas of engi-
neering and physics.

Theorem 5.1. Let V = (P, Q, R) be a nonvanishing vector field defined
in a domain fl of R3, with P, Q, R in C1(fl). If V is solenoidal in fl, then
given any point (x0, Yo' z0) in fl, there is a neighborhood fl0 of (x0, Yo' z0)
and a vector field W with C' components defined in flo such that

(5.7) V(x, y, z) = curl W(x, y, z), (x, y, z) E

The vector field W is often called a vector potential for the given field
V. Although the theorem gives only a local result, it sometimes happens
that one can find a vector potential W for V which is defined in the entire
domain fl. This occurs in Example 5.1.

Before giving the proof, we will list some identities from vector calculus
which will be needed in the course of the proof. Letfbe a C1 function, and
let u, v be C1 vector fields, all being defined in a common domain fl. Then

(5.8) div(jij) = gradf•u +fdiv u,
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(5.9) div(u x v) = (curl u)v — (curl v)u,

(5.10) curl (grad f) = 0 (assume f E C2 here),

(5.11) curl = (grad f) x u + f curl u.

Proof of Theorem 5.1. Let u1, u2 be two first integrals of V which are
functionally independent in some neighborhood fl1 of (x0, Yo' z0). At each
point of fl1, the vector field V is parallel to grad u1 X grad u2, so that we
can write

(5.12) V(x, y, z) = X(x, y, z)(grad u1 x grad u2)

for some function A defined in fl1. The function A is C1 since

— V (grad u1 X grad u2)

— I grad u1 X grad u2 2'

and u1, u2 are actually C2. This smoothness of u1 and u2, which we have
not used before, follows from the manner in which u1 and u2 are obtained
from the system of ordinary differential equations (1.10). Since V is
solenoidal in fl1, it follows by applying identities (5.8), (5.9) and (5.10) that

(5.13) 0 = div V = grad A•(grad u1 x grad u2) + A[(curl grad u1)grad u2
— (curl grad u2)grad u1] = grad A(grad u1 x grad u2).

Equation (5.13) shows that grad A is perpendicular to grad u1 x grad u2
at each point of fl1, and so is perpendicular to V at each point of fl1, i.e.

ax ax ax
(5.14) P—+Q—+R----=O in fl1.

ax ay az

Thus A is a solution of the partial differential equation studied in Section
3, and we can apply the results of that section to express A as a function of
u1 and u2. Explicitly, Theorem 3.2 asserts that there is a neighborhood 110
of (x0, Yo' z0) with fl0 C fl1, and a C' function F(u1, u2) such that

(5.15) A(x, y, z) = F(u1(x, y, z), u2(x, y, z)), (x, y, z) E flo.

Now, let G(u,, u2) be a function such that

(5.16) F(u1, u2) = (u1, u2).
au1

From (5.12), (5.15) and (5.16) we see that in flo,

(5.17) V
=

grad x grad u2

= grad G x grad u2.

In the last line of (5.17) we used the identities

grad G(u1, u2) = grad u1 + grad u2, grad u2 x grad u2 = 0.
au1 au2
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To complete the proof we need only observe that (5.17) can be written in
the form

V = curl (G grad u2)

because of identities (5.10) and (5. ii). If we set

(5.18) W= Ggradu2
then

V = curlW in fl0.

Example 5.1. Let V = (y, —x, 0) be the vector field of Example 1.3,
with fi being R3 minus the z-axis. V is clearly solenoidal in fi. Two
functionally independent first integrals of V were found in Example 1.3 to
be

u1=x2+y2, u2=z.
Easy calculations show that

grad u1 x grad u2 = 2(y, —x, 0)

= 2V,

so that the proportionality factor A in this case is simply

A =

The function F(u1, u2) in (5.15) is

F(u1, u2)

and for G(u1, u2) we can take the function (1/2)u1. It follows from (5.18)
that

W = u1 grad U2

= (x2 + y7)grad z

= (0, 0, (x2 + y2)).

Thus, for all points of fl we have

V = curl (0, 0, (x2 + y2)).

Problems

5.1. Prove the vector identities

5.2. Prove that a vector potential for V cannot be unique. [Hint: Consider
the identity (5.10).]

5.3. Derive equation (5.13).
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5.4. Derive equation (5.17).
5.5 Find vector potentials for

(a) V=(1, 1, 1)infl=R3,
(b) V = (x/(x2 + y2), y/(x2 + y9, 0) in fl = R3 minus the z-axis.
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CHkPTER III

Theory and applications of
quasi-linear and linear

equations of first
order

In this chapter we study quasi-linear (and linear) equations of the first
order. The theory and method of solution of the initial-value problem for
these equations is obtained as a direct application of the theory and
method of construction of integral curves and surfaces of vector fields
presented in Chapter II.

In Section 1 we define what is meant by a solution of a first order
equation and we classify first order equations according to linearity. In
Section 2 we define the general integral of a first order quasi-linear
equation and describe a method for obtaining it. The general integral is a
formula which yields most of the solutions of the equation. In Section 3
we describe the initial-value problem for a first order quasi-linear equa-
tion and obtain the condition under which there exists a unique solution to
this problem. In Section 4 we show that if this condition is not satisfied
then there is usually no solution to the problem, and in the special case in
which there is a solution, there are actually infinitely many solutions. In
Section 5 we apply the general theory to the study of conservation laws
which are quasi-linear first order equations that arise in many areas of
physics. The solutions of these equations frequently develop discontinui-
ties known as shocks or shock waves, which are well-known phenomena
in gas dynamics. Two examples, one in traffic flow and the other in gas
dynamics, are discussed in detail in Section 6. Finally in Section 7 we
present an important application of linear first order equations to probabil-
ity, specifically to the study of certain stochastic processes. We discuss in
detail two examples, one concerning a simple trunking problem in a
telephone network and the other concerning the control of a tropical
disease. Many other examples are described in the problems of the
section.

1. First Order Partial Differential Equations
A first order partial differential equation in two independent variables

x, y and one unknown z, is an equation of the form
57
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(1.1) F(x, y, z,

z, p, q) is defined in some domain in R5. We use (x, y,
z, p, q) for the coordinates of a point in R5. A solution of equation (1.1) in
some domain fl of R2 is a function z = f(x, y) defined and C' in fl and such
that the following two conditions are satisfied:

(i) For every (x, y) E fl, the point (x, y, z, is in the domain of the
function F.

(ii) When z = fix, y) is substituted in (1.1) the resulting equation is an
identity in x, y for all (x, y) E fl.

We classify first order p.d.e. 's according to the special form of the
function F. An equation of the form

(1.2) P(x, y, + Q(x, y, z)z,, = R(x, y, z)

is called quasi-linear. Here the function F is a linear function in the
derivatives and with the coefficients P, Q, R depending on the
independent variables x and y as well as on the unknown z. An equation of
the form
(1.3) P(x, + Q(x, = R(x, y, z)

is called almost linear. Note that the coefficients of and are functions
of the independent variables only. An equation of the form

(1.4) a(x, y)z y)

linear. Here the function F is linear in z with all
coefficients depending on the independent variables x and y only. Finally,
an equation which does not fit any of the above classifications is called
nonlinear.

Example 1.1. The p.d.e.

(1.5) + = 1

is known as the equation of straight light rays. It is a nonlinear equation.
Example 1.2. The p.d.e.

a(z) a given function of z, expresses a conservation law. It is a
quasi-linear equation.

Example 1.3. The p.d.e.

+ = nz

is satisfied by every function z = f(x,y) which is homogeneous of degree n
(see Problem 1.1). It is a linear equation. Equation (1.7) is called Euler's
relation.

Example 1.4. Let g(x, y, z) be a given C1 function defined in some
domain of R3 and having non-vanishing gradient in this domain. Then g
defines a one parameter family of surfaces

g(x, y, z) = c.
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If the surface

z =f(x,y)

is orthogonal to every member of the family of surfaces (1.8) (i.e., if at
every point of(I.9) the normal to (1.9)is orthogonal to the normal to that
surface of (1.8) passing through that point), then z satisfies the p.d.e.

a

3x
X

.9y .9Z

(See Problem 1.2.) This is a quasi-linear equation.
Example 1.5. The p.d.e.

+ = z2

is almost linear.

In this chapter we study quasi-linear first order p.d.e. 's. Note that
linear and almost linear equations are special cases of quasi-linear equa-
tions.

Problems

1.1. Let! be a C' function in R2 and suppose that, for some integern 1,1
satisfies the condition

(1.12) f(tx, ty) = ttLf(x, y)

for all t E R1 and all (x, y) E R2. Then the function f is called
homogeneous of degree n.

(a) Give examples of functions which are homogeneous of degree 1,
2 and 3.

(b) Prove that if f is homogeneous of degree n then z = f(x, y)
satisfies the p.d.e. (1,7). [Hint: Differentiate (1.12) with respect
to t and then substitute t = 1.]

1.2. Prove the assertion in Example 1.4.

2. The General Integral of + = R
In this section we describe a method for finding solutions of the quasi-

linear equation

P(x, y, + Q(x, y, = R(x, y, z).

We assume that the functions P. Q, R are defined and C' in some domain
fl of R3 and do not vanish simultaneously at any point of this domain. A
solution of equation (2.1) in a domain fl of R2 is a function z = f(x, y)
defined and C' in and such that the following two conditions are
satisfied:

(i) For every (x, y) E fl, the point (x, y, f(x, y)) belongs to the domain fl
of the functions P, Q, R.

(ii) When z = f(x, y) is substituted in (2.1), the resulting equation is an
identity in x, y for all (x, y) E fl.
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A solution

(2.2) z = f(x, y), (x, y) E fl

of equation (2.1) may be viewed as a surface in R3, called a solution
surface of equation (2.1). The normal to this surface is (fr, ft,, —1) = (zr,

— 1). Equation (2.1) requires that this normal be orthogonal to V = (P,
Q, R) at each point of (2.2). Thus, a surface S is a solution surface of
equation (2.1) ifS can be described by an equation of the form (2.2) and if
at each point of S the vector V = (F, Q, R) is tangent to S. In other words,
a solution surface of equation (2.1)is an integral surface of the vector field
V = (F, Q, R) which can be described by an equation of the form (2.2).
This suggests that in order to find solution surfaces (and hence solutions)
of (2.1) we should look for integral surfaces of the vector field V or
solution surfaces of the p.d.e.

(2.3) + + = 0

which can be described by an equation of the form (2.2). Recall that a
solution surface of (2.3) is a level surface, say

(2.4) u(x, y, z) = 0, (x, y, z) E

of a solutionu(x, y, z) of (2.3). If equation (2.4) can be solved for z in terms
of x and y, then the resulting function is a solution of equation (2.1). We
express this more precisely in the following lemma.

Lemma 2.1. Let u be in and suppose that at every point of the
level surface (2.4) the following two conditions are satisfied:

(i) + + = 0
(ii) 0.

Then equation (2.4) implicitly defines z as a function of x and y and this
function satisfies the p.d.e. (2.1).

Proof. By the implicit function theorem we have

— 'Ix — Uz,
zx———--, zy———

and hence

+ =
— + = — —Rue

= R.
uz uz

Lemma 2.1 indicates how to obtain solutions of equation (2.1) from
solutions of equation (2.3). Since we already know the general solution of
equation (2.3) (see Section 3, Chapter II), Lemma 2.1 yields a large class
of solutions of equation (2.1).

Theorem 2.1. Let u1 and u2 be two functionally independent solutions
of equation (2.3) in a domain of R3. Let F(u1, u2) be an arbitrary C'
function of two variables and consider the level surface

(2.5) F(u1(x, y, z), u2(x, y, z)) = 0.

Then, on every part of this surface having normal with non-zero z-
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component, equation (2.5) defines z implicitly as a function of x and y and
this function is a solution of equation (2.1).

Definition 2.1. Equation (2.5) is called the general integral of equation
(2.1) in fl.

It is known that not every solution of equation (2.1) can be obtained
from the general integral (2.5) as described in Theorem 2.1. For this
reason, equation (2.5) should not be called the general solution of(2. 1).

In practice, the functions u1 and u2 used in the general integral (2.5) are
obtained by solving the associated system of equations

dxdydzPQR
as described in Chapter II, Section 2.

Example 2.1. Find the general integral of

(2.7) + = z.

The associated system of equations is

dx = dy = dz

x y z

and we can take u1 = u2 = The general integral is

(2.8)

F is an arbitrary C' function of two variables. If we take F(ub U2) =
u1 — u2, (2.8) becomes

—! = o.
x x

Solving for z we get z = y which is obviously a solution of (2.7) in the
whole of R2. If we take F(u1, u2) = u12 — u2 we get the solution z = y2/x
defined in either one of the domains x > 0 or x <0. If we take F(u1, u2) =
u1 — u22 then equation (2.8) becomes

The part of this surface with z > 0 defines z as a function of x and y,

z =

This is a solution of(2.7) in either one of the domains x > 0, y > 0 or x <0,
y <0.

It should be remarked that if one of the functionally independent first
integrals, say u1, is independent of z, then, without loss of generality, the
general integral (2.5) may be written in the form
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(2.9) u2(x, y, z) = f(u1(x, y))

wheref is an arbitrary C' function of a single variable.

Example 2.2. Consider the linear equation

(2.10) a(x, + b(x, y)zy = 0

where a and b are C' and do not vanish simultaneously. The general
integral of (2.10) is given by

(2.11) z =f(u(x,y))
wheref is an arbitrary C' function of a single variable and u(x, y) = c is the
general solution of the o.d.e.

dx — dy

a(x, y) b(x, y)

Indeed, the system of o.d.e.'s associated with (2.10) is

dx — dy _dz
a(x, y) — b(x, y) — 0

and two functionally independent first integrals of this system are the
functions u(x, y) and z. It can be shown (see Problem 2.3) that (2.11) is
actually the general solution of (2.10).

Problems

2.1. For each of the following equations find the general integral and
compute three different solutions. Describe carefully the domain(s)
of the (x, y)-plane in which each of these solutions is defined.
(a) + y2zy = 2xy
(b) + yzy = x
(c) + = (x + y)z

(d) =
(e)
(f) + = xy(z2 + 1)

(g) x(y — + y(z — = z(x — y)
(h) = —y.

2.2. Show that the general integral of Euler's relation (1.7) leads to
solutions of the form z = x"f (y/x) where f is a function of a single
variable. Verify that these solutions are homogeneous functions of
degree n.

2.3. Show that (2.11) is the general solution of (2.10). More precisely,
prove the following assertion: Let u(x, y) = c be the general solution
of dx/a = dy/b in a domain of R2, letz(x, y) by any solution of (2. 10)
in fl and let (x0, y0) be any point of fl. Then there is a functionf(u) of
a single variable such that z(x, y) = f1:u(x, y)) for all (x, y) in some
neighborhood of (x0, Yo). [Hint: Use the fact that both u and z satisfy
(2.10) and the fact that a and b do not vanish simultaneously to show
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that = 0. Then apply Theorem V, Section 9.6 of Taylor.']

2.4. The quasi-linear

+ y(l — = (y — 1)z

arises in the study of one-dimensional neutron transport theory (see
Bellman, Kalaba and Wing2). Find one first integral. It is not a simple
task to find a second first integral.

2.5. Extension to n dimensions. Consider the quasi-linear first order p.d.e.
in the unknown z and n independent variables x1

(2.12) P1(x, z)

where x = (x,, . . . , It is assumed that the functions P1
R are defined and C1 in some domain of and do not vanish
simultaneously at any point (x, z) = (x1, .. . z) of IL
(a) Define what is meant by a solution of (2.12) in some domain of

R'.
In order to find solutions of (2.12) we look for solutions u(x, z)

= u(x1 z) of

(2.13) P1(x, + .. . + + R(x,

z) are first integrals of the vector field V(x, z)
= (P1(x, z), . . . , z), R(x, z)) or of the associated system of
o.d.e.'s

(2 14)
dx, — — dz

P1(x, z) — — z) — R(x, z)

In practice, n functionally independent solutions of (2.13) are
obtained by solving the system (2.14) using the methods de-
scribed in Section 2 of Chapter II (see also Problem 3.3 of
Chapter II). A level surface of a solution of (2.13), say

(2.15) u(x, z) = 0,

yields a solution of (2.12), if (2.15) can be solved for z.
(b) State and prove the extension of Lemma 2.1 to n dimensions.
(c) State and prove the extension of Theorem 2.1 which briefly says

that the general integral of (2.12) is given by

(2.16) F(u,(x, z), . . . , z)) = 0

where F(u,, ..., is an arbitrary C' function of n variables and
are n functionally independent first integrals of (2.14).

The general integral (2.16) implicitly defines most (but not neces-
sarily all) solutions of (2.12).

2.6. For each of the following equations find the general integral and
compute three different solutions.
(a) + + = z

(b) + + = z.
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3. The Initial Value Problem for Quasi-linear First Order
Equations. Existence and Uniqueness of Solution

In this section we discuss the initial value problem, or Cauchy problem,
for the first order quasi-linear p.d.e.

(3.1) P(x, y, + Q(x, y, = R(x, y, z).

Recall that the initial value problem for a first order ordinary differential
equation asks for a solution of the equation which has a given value at a
given point of R'. The initial value problem for the partial differential
equation (3.1) asks for a solution of (3.1) which has given values on a
given curve in R2. We first give a precise statement of the problem.

Initial Value Problem
Let C be a given curve in R2 described parametrically by the equations

(3.2) x = x0(t), y = y0(t);

where x0(t), y0(t) are in C1(I). Let z0(t) be a given function in C'(I). The
function z0(t) may be thought of as defining a function on the curve C. The
initial value problem for equation (3.1) asks for a function z = z(x, y)
defined in a domain of R2 containing the curve C and such that:

(i) z = z(x, y) is a solution of (3.1) in IL
(ii) On the curve C, z is equal to the given function z0, i.e.

(3.3) z(x0(t), y0(t)) = z0(t), t E I.

The curve C is called the initial curve of the problem while the function z0
is called the initial data. Equation (3.3) is called the initial condition of the
problem.

tEl

y

= zo on C

+ = R in

Fig. 3.1
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If we view a solution z = z(x, y) of (3.1) as a solution surface of (3.1), we
can give a simple geometrical statement of the problem: Find a solution
surface of (3.1) containing the given curve C in R3, described parametri-
cally by the equations

(3.4) x = x0(t), y = y0(t), z = z0(t); t E I.

The theorem that we state below asserts that under a certain condition
we can solve this problem locally; i.e., we can find a unique solution of
the problem in a neighborhood of any point of C at which a certain
condition is satisfied. The solution can be found by using the method
described in Section 4 of Chapter II for constructing an integral surface
of the vector field V = (P, Q, R) containing a given curve.

Let (x0, Yo, z0) be a point of the curve C corresponding to the parameter
value t = t0 El; i.e., (x0, Yo, z0) = (x0(t0), y0(t0), z0(t0)). Let be a domain in
R3 containing (x0, Yo, z0) and let

(3.5) u(x, y, z) = 0

be an integral surface of the vector field V = (P, Q, R), or, equivalently, a
solution surface of the equation

(3.6) + + = 0

in Cl containing the part of C in ft, i.e.

(3.7) u(x0(t), y0(t), z0(t)) = 0.

Suppose, furthermore, that

(3.8) Yo' z0) 0.

Then, by Lemma 2.1, equation (3.5) implicitly defines a function z = z(x,
y) in a neighborhood U of (x0, ye), and this function is a solution of the
initial value problem for (3.1) in U (see Fig. 3.2).

Combining the above observation with Theorem 4.2 of Chapter II we
obtain the following basic theorem.

Theorem 3.1. Suppose that P, Q, R are of class C' in a domain of R3
containing the point (x0, Yo, z0) and suppose that

dy0(t0) dx0(t0)
(3.9) P(x0, z0)

dt
— Q(x0, Yo, z0)

dt

Then in a neighborhood U of (x0, Yo) there exists a unique solution of
equation (3.1) satisfying the initial condition (3.3) at every point of C
contained in U.

Proof. We note first that condition (3.9) implies that the vector V = (P,

Q, R) is not tangent to the curve C at the point (x0, Yo, z0) (why?). By
Theorem 4.2 of Chapter II it follows that in a neighborhood of (x0, Yo' z0)
there exits a unique integral surface of equation (3.6) containing the part
of C in this neighborhood. This integral surface can be written in the form
(3.5). It remains to show that condition (3.8) is satisfied so that we can
solve (3.5) for z. Condition (3.8) follows from condition (3.9). In fact, at
the point (x0, Yo, z0), grad u is orthogonal to both V (by equation (3.6)) and
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Fig. 3.2

u(x, y, z) = 0

or

for (x, y) U,

z = z(x, y)

-y

to the tangent T to C (by equation (3.7)). Hence, grad u is parallel to V x
T. Now, the left-hand side of (3.9) is precisely the z-component of V X T
at (x0, Yo' z0). Hence, condition (3.9) implies that the z-component of grad
u is different from zero at (x0, Yo, z0), which means that condition (3.8) is
satisfied.

The uniqueness assertion of the theorem follows from the fact that
every integral curve of V passing through any point of C must lie on a
solution surface of (3.1) containing C.

In geometrical language, condition (3.9) means that the projection of
the vector V(x0, Yo' z0) on the (x, y)-plane is not tangent to the initial curve
C at (x0, Yo).

The method of construction of the solution to the initial value problem
consists of viewing the initial condition as a given curve C in R3 and
constructing, by the methods of Section 4, Chapter II, the integral surface
of V = (P, Q, R) containing the curve C. Condition (3.9) of Theorem 3.1
guarantees that we can solve equation (3.5) of this integral surface for z in
terms of x and y in a neighborhood U of the point (x0, yo). The size of the
neighborhood U depends on the differential equation, on the initial curve
C and on the initial data z0. We illustrate the method of solution in the
following example.

Yo)
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Example 3.1. Consider the quasi-linear equation

(3.10)

Let the initial curve C be given by

(3.11) y=l, —oo<x.(oo.

Find the solution z = z(x, y) of (3.10) which on the initial curve C has the
values

(3.12) z=1+x.
First we express the initial condition (3.1 l)-(3. 12) in parametric form.

The curve C is given by

(3.13) x=t, y=l; —oo<t<oo

and on C the solution must take the values

(3.14) z= 1 +t.
In geometrical terms the problem is to find the solution surface z = z(x, y)
of (3.10) containing the curve C given by

(3.15) x=t, y=l, z=1+t;
For equation (3.10) we have

V=(P, Q,R) =(y+ z,y,x— y),
and on the curve

dy dx
P—1 — Q- = (1 + I + t) 0 — 1 x 1 = —1.

Thus, condition (3.9) is satisfied at every point of and by Theorem 3.1
we know that there exists a unique solution to the problem in a neighbor-
hood of every point of C. We use the method described in Section 4,
Chapter II, to find the solution. The system of equations associated with
the vector field V is

dx dy dz

y+z_ y
This system was solved in Example 2.3 of Chanter II where we found the
two first integrals

x+zul=—, u2=(x—y)2—z2.
y

These first integrals are defined and are functionally independent in the
domainy >0 which contains the curve C. To find the integral surface of V
containing C we compute

U1=l+2t, U2=—4t

and eliminating t we obtain
2U1 — 2 + U2 = 0.
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The required integral surface is

x+z2— —2 + (x — y)2 — z2 = 0.
y

This equation has two solutions for z and in order to pick the one we
want, we use the initial condition (3.1 1)-(3. 12). Thus, we get

2
(3.17) z=—+x—y.

y

It is left to the reader to verify that (3.17) satisfies the p.d.e (3.10) and the
initial condition (3.11)-(3.12) and that it is therefore the required solution
to the initial value problem. Note that the solution (3.17) is defined in the
domain y> 0.

We close this section with an application of Theorem 3.1 to the follow-
ing special initial value problem which arises frequently in applications,

(3.18) P(x, y, + z1, = R(x, y, z),

(3.19) z(x, 0) = f(x),
wheref(x) is a given function defined for aIlx E R1. It is easy to verify that
for this problem, condition (3.9) is always satisfied at every point of the
initial curve, which in this case is the x-axis. Therefore, Theorem 3.1
yields the following existence and uniqueness result.

Corollary 3.1. Suppose that P and R are of class C1 in R3 and I is of
class C' in R'. Then in a neighborhood of every point of the x-axis there is
a unique solution of the initial value problem (3.18), (3.19).

Problems

3.1. Solve the following initial value problems. Describe carefully the
domain of the solutions.
(a) z; z = cos t on the initial curve C: x = t, y = 0, —00 <t

<00.
(b) + y2z1, = z2; z = 1 on the initial curve C: y = 2x.
(c) x(y — + y(z — = z(x — y); z = t on the initial curve C: x

=t,y=2t/(t2— 1),O<t<1.
(d) — yz1, = 0; z = on the initial curve C: y = x, x > 0.
(e) — = 2xyz; z = on the initial curve C:x = t, y = t; t >0.
(f) + yz1, = z; z = 1 on the initial curve C: y = x2, x> 0.
(g) = 2tontheinitialcurveC:x =t,y = 1; —°°<t

<00.
3.2. Answer the "why?" in the proof of Theorem 3.1.
3.3. Verify that for the problem (3.18), (3.19), condition (3.9) is always

satisfied at every point of the initial line y = 0.
3.4. For each of the following two initial value problems

P(x, y, + z1, = R(x, y, z), z(x, Yo) = flx)
+ Q(x, y, = R(x, y, z), z(x0, y) = fly);

formulate and prove existence and uniqueness results analogous to
that stated in Corollary 3.1.
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4. The Initial Value Problem for Quasi-linear First Order
Equations. Nonexistence and Nonuniqueness of Solutions
In the previous section we proved the existence and uniqueness of

solution of the initial-value problem for equation (3.1) in a neighborhood
of any point (x0, Yo) of the initial curve C at which condition (3.9) is
satisfied. In geometrical language, condition (3.9) means that the projec-
tion of the vector V(x0, Yo, z0) on the (x, y)-plane is not tangent to the curve
C at (x0, Yo). In this section we will show that if condition (3.9) is violated,
i.e., if

dy0(t0) dx0(t0)
P(x0, Yo, z0)

dt
— Q(x0, z0)

dt
=

then usually there is no solution to the initial-value problem, and in a
special case in which there is a solution, there are actually infinitely many
solutions.

We assume here that P and Q do not vanish simultaneously. Note that
condition (4.1) says that the components of the vectors (P(x0, Yo, z0), Q(x0,
Yo, z0)) and (dx0(t0)/dt, dy0(t0)/dt) are proportional, i.e.

dx0(t0) dy0(t0)

dt dt

P(x0, Yo, z0) = Q(x0, Yo, z0) =

where is the constant of proportionality.
The reason why, under condition (4.1), there is usually no solution to

the initial-value problem is that by using the p.d.e. (3.1) and condition
(4.1) we can obtain information which can also be obtained from the initial
condition (3.3). Thus the p.d.e. and the initial condition may contradict
each other. Indeed, from the initial condition we know that at the point
(x0, Yo) the derivative of the solution along the initial curve C must be
equal to dz0(t0)/dt. But this derivative must also be equal to

dx0(t0) dy0(t0)
Yo) dt

+ Yo) dt
= p[P(x0, Yo, z0)z,,(x0, Yo) + Q(x0, Yo, Yo)]

= Yo, z0),

where in the first equality we used condition (4.1)' and in the second
equality we used the p.d.e. (3.1). Thus, if

dz0(t0)

(4.2)
dt

R(x0, Yo, z0)

there cannot be a solution of the initial value problem. We have proved
the following theorem.

Theorem 4.1. Under the conditions (4.1)' and (4.2), there is no solution
to the initial value problem (3.1)—(3.3) in any neighborhood of the point
(x0, Yo).
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We want to emphasize here that in proving Theorem 4.1 we have shown
that, under the condition (4.1), the left-hand side of the p.d.e. (3.1)
evaluated at (x0, z0), is proportional to the derivative of z along the
initial curve C (i.e., the directional derivative of z in the direction tangent
to C). Since this derivative can also be computed from the initial data,
there cannot be a solution to the initial value problem unless the two
values agree.

In order to express the conditions of Theorem 4.1 geometrically, let V(t)
denote the values of the vector field V on the curve C,

V(t) = V(x0(t), y0(t), z0(t)), t E I,

and let T(t) denote the tangent vector to C,

idx0(t) dy0(t) dz0(t)\
T(t)

= 7).
Condition (4.1) means that the projection of V(t0) on the (x, y)-plane is
tangent to the initial curve C at (x0, ye). The conditions (4. 1)'-44.2) of
Theorem 4.1 mean that the vectors V(t0) and T(t0) are not collinear
whereas their projections on the (x, y)-plane are collinear (see Fig. 4.1).
Alternatively, the conditions of Theorem 4.1 mean that V is not tangent to
C at (x0, Yo, z0) while its projection on the (x, y)-plane is tangent to C at
(x0, ye).

If, under the conditions of Theorem 4.1, we try to find the solution to
the initial-value problem by the method described in Section 3, we would

Fig. 4.1

C

y
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find that the equation u(x, y, z) = 0 of the integral surface containing
cannot be solved for z near (x0, Yo, z0) because Yo, z0) = 0. This can
be seen from Figure 4.1 since both vectors V(t0) and T(t0) must be tangent
to u(x, y, z) = 0 at (x0, Yo, z0).

Let us suppose now that condition (4.1) holds and the p.d.e. and the
initial conditions do not contradict each other, i.e.

dx0(t0) dy0(t0) dz0(t0)

dt — dt — dt —
(4.3)

P(x0, Yo' z0) — Q(x0, Yo' z0) — R(xo, Yo, z0) —

or

(4.3)' T(t0) =

Here we want to consider only the special case in which condition (4.3)
holds at every point of C (or at least at every point of C near (x0, Yo, z0)),

(4.4) T(t) = t E I.

condition (4.4) means that V is everywhere tangent to or that the curve
C is an integral curve of V. The initial condition (3.3) requires that the
desired solution surface of (3.1) passing through (x0, Yo, z0) must contain
the integral curve of V passing through (x0, Yo' z0). But this requirement is
always satisfied by every integral surface passing through (x0, Yo, z0)
(recall Theorem 4.1 of Chapter II). Hence the initial condition is automati-
cally satisfied and the initial value problem is reduced to the problem of
finding a solution surface z =flx, y) of(3.1) passing through the point (x0,
Yo, z0). But we can find infinitely many such solution surfaces by using the
general integral (2.5). Thus we have proved the following theorem.

Theorem 4.2. Under the condition (4.4), the initial-value problem
(3.1)—(3.3) has infinitely many solutions in a neighborhood of (x0, yo).

If, under the assumption (4.4), we try to find the solution of the initial-
value problem by the method described in Section 3, we would find that
there are infinitely many integral surfaces u(x, y, z) = 0 containing C and
since infinitely many of these are such that 0, we would obtain
infinitely many solutions to the initial-value problem.

Problems

4.1. Consider the equation

zzx + yzi, = x

and the initial curve

C:x=t, y=t; t>0.
Decide whether there is a unique solution, there is no solution, or
there are infinitely many solutions in a neighborhood of the point (1,
1), for each of the initial value problems with the following initial
data:
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(a)z=2t on C,
(b)z=t on C,
(c) z = sin (ir/2)t on C.

4.2. Consider the initial value problem

+ yz1, = z;

z = 1(t) on the initial curve C: x = t, y = t; t> 0. Determine the class
of functionsflt) for which condition (4.4) is satisfied and hence there
are infinitely many solutions to the problem. Find these solutions.

5. The Initial Value Problem for Conservation Laws. The
Development of Shocks

Conservation laws are first order quasi-linear p.d.e. '5 that arise in many
physical applications (see Section 6 for examples). Let us consider the
following initial value problem for a conservation law,

+ = 0,

(5.2) z(x, 0) = f(x),

where a and f are given C1 functions. According to Corollary 3.1, this
problem has a unique solution in a neighborhood of every point of the
initial line y = 0. In order to find the solution we consider the system of
o.d.e.'s associated with (5.1),

dx — dy — dz

a(z) — 1 — 0

Two functionally independent first integrals of this system are

u1=z, u2=x—a(z)y
and, therefore,

z = F(x — a(z)y)

is a general integral of (5.1). In order to satisfy the initial condition (5.2)
we must take F(x) = fix). Thus, for sufficiently small y , the solution of
(5.1), (5.2) is implicitly defined by the equation

(5.3) z =f(x — a(z)y).

Using the implicit function theorem, it is easy to show (see Problem 5.1)
that the solution of (5.1), (5.2) exists and is implicitly defined by (5.3) as
long as the condition

(5.4) 1 + f'(x — a(z)y)a'(z)y > 0

is satisfied. Note that (5.4) is always satisfied if I y is sufficiently small.
By a solution of equation (5.1) we mean of course a differentiable function
z(x, y). From the formulas in Problem 5.1 we see that the derivatives
and z1, tend to infinity as the left side of (5.4) tends to zero. In fact when
the left side of (5.4) becomes zero the solution develops a discontinuity
known as a shock. The development of shocks is a well known phenome-
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non in gas dynamics. The mathematical analysis of shocks involves
generalization of the concept of a solution of a p.d.e. to allow for
discontinuities. It is also necessary to impose on the solution a certain
condition to be satisfied across a discontinuity. (In gas dynamics this
condition is known as the entropy condition, since it requires that the
entropy of gas increase after crossing a discontinuity line.) In this book
we do not go any further into the study of shocks. Instead we refer the
interested student to the survey article by P. D. Lax.3

In order to visualize and compute the values of the solution defined
implicitly by (5.3) and at the same time improve our understanding of the
development of shocks, let us consider a fixed point x0 of the x-axis and
let z0 =f(x0). Then the set of points (x, y, z) satisfying the pair of equations

(5.5) x — a(z0)y = xo, z = z0,

also satisfies equation (5.3). This means that the straight line in (x, y, z)-
space defined by the pair of equations (5.5) lies on the surface defined by
equation (5.3). It follows that along the line

(5.6) x — a(zo)y = x0

in the (x, y)-plane passing through the point (x0, 0), the solution z of the
initial value problem (5.1), (5.2) is constant and equal toz0 = f(x0) (see Fig.
5.1). In physical problems the variable y represents time and we are
usually interested in the future behavior of the solution (after the initial
instant y = 0). If no two lines of the form (5.6) intersect in the half-plane y
> 0 we conclude that the solution exists as a differentiable function for all
y > 0. If, however, two lines of the form (5.6) intersect when y > 0, then
at the point of intersection we have an incompatibility since the solution
cannot be equal to two distinct values. For example, let x1 and x2 be two

y

x — a(z0)y = x0

x

Fig. 5.1
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points of the initial line y = 0, let z1 = fix1), z2 = fix2) and suppose that
a(z1) > a(z2). Then the lines

x — a(z1)y = x1, x — a(z2)y = x2,

intersect at the point (x0, Yo) where

X2 — X1
Yo =

a(z1) — a(z2)

(see Fig. 5.2). At the point (x0, Yo) we have an incompatibility since z1 # z2
and z cannot be equal to z1 and z2 at the same time. Hence the solution
cannot exist as a differentiable function for y Yo and a shock has
developed.

Lines of the form (5.6) are often called characteristic lines for the initial
value problem (5.1), (5.2). (See Chapter V, Section 4.)

Example 5.1. The solution of the initial value problem

(5.7)

(5.8)

exists and is implicitly defined by

(5.9)

zzx + zi, = 0,

z(x, 0) = —x,

Fig. 5.2

y

z = —(x — zy)

x — a(z2)y = x2 x — a(z1)y = xi

= f(xt)
Z2 = f(x2)

x1 x2
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as long as the condition

1 — y >0,
is satisfied. In this case equation (5.9) can be easily solved for z,

x
z=——--—---, y<1.

1 —y
Clearly the solution breaks down and a shock is developed when y = 1. At
a point x0 of the x-axis, z = z0 = —x0, and the solution is constant and equal
to —x0 along the line

(5.12) x + x0y = x0

passing through the point (x0, 0). Note that all lines (5.12) pass through the

point (0, 1).

Problems

5.1. Use the implicit function theorem to show that (5.3) implicitly de-
fines z as a function of x and y provided that condition (5.4) is
satisfied. Then, by implicit differentiation of (5.3) derive the formu-
las

f'(x — a(z)y) a(z)f'(x — a(z)y)
zx= , zzI=—

1 + f'(x — a(z)y)a'(z)y 1 + f'(x — a(z)y)a'(z)y

and verify that the function z(x, y) implicitly defined by (5.3) satisfies
the p.d.e. (5.1).

5.2. If a(z) = a = constant, equation (5.1) is linear. Find the solution of
(5.1), (5.2) in this case and show that shocks never develop. Also
draw the lines in the (x, y)-plane along which the solution is constant.

5.3. Find the solution of(5.1), (5.2) iff(x) = k = constant. Do shocks ever
develop in this case?

5.4. Show that if the functions a(z) andf(x) are both nonincreasing or both
nondecreasing, then the solution of (5.1), (5.2) exists and no shocks
develop for y 0.

5.5. Find the solution of

+ = 0, z(x, 0) = x.

Draw the lines in the (x, y)-plane along which the solution is con-
stant. Do shocks ever develop for y � 0?

5.6. For the problem

+ = 0, z(x, 0) = x

derive the solution

( x, when y=O
z(x,y) = 4xy — I

a , when y * 0 and 1 + 4xy > 0.

When do shocks develop? Use the Taylor series for \/TT7about
0 to verify that lim z(x, y) = x.

ij—.0
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5.7. For the problem

+ = 0 z(x, 0) = x2

derive the solution

______

when y = 0

when y*0 and 1+4xy>O.

When do shocks develop? Use the Taylor series for about
0 to verify that urn z(x, y) = x2.

zi-.0

5.8. In the formulas for the solutions of Problems 5.6 and 5.7, "rational-
ize" the numerator to obtain formulas that show immediately that
the solutions are continuous on the initial line y = 0.

5.9. Consider the initial value problem

+ + + = 0

z(x1, ..., 0) = f(x1, ...,

Derive the formula

z = f(x1 — a1(z)y, ..., —

which implicitly defines the solution of the problem.

6. Applications to Problems in Traffic Flow and Gas
Dynamics

We present here two applications of our analysis of the initial value
problem for conservation laws. These laws arise in the study of many
physical problems and, in particular, in the study of the flow of nonvis-
cous compressible fluids. A conservation law asserts that the change in
the total amount of a physical entity contained in any region of space is
due to the flux of that entity across the boundary of that region. The first
application deals with a conservation law which arises in the study of
traffic flow along a highway. The second application deals with the one-
dimensional, time-dependent flow of a compressible fluid under the as-
sumption of constant pressure.

Traffic Flow Along a Highway
The model of traffic flow that we discuss here is based on the assump-

tion that the motion of individual cars can be considered analogous to the
flow of a continuous fluid. We take the x-axis along the highway and
assume that the traffic flows in the positive direction. Let p = p(x, t)
denote the density (cars per unit length) of the traffic at the point x of the
highway at time t, and let q = q(x, t) denote the flow rate (cars per unit
time) at which cars flow past the point x at time t. We derive a relation
between p and q under the assumptions that cars do not enter or leave the
highway at any one of its points and p(x, t) and q(x, t) are C' functions of x
and t. Let [x1, x2} with x2 > x1 be any segment of the highway. The total
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number of cars in this segment is given by
fX2

J
p (x, t)dx

Xi

and the time rate of change of the number of cars in the segment is

d
J

p(x, t)dx
= J

—(x, t)dx.
(At Xi Xi

This rate of change must also be equal to

q(x1, t) — q(x2, t),

which measures the time rate of cars entering the segment at x1 minus the
time rate of cars leaving the segment at x2. Therefore

J
(x, t)dx = q(x1, t) — q(x2, t),

Xi

or

—(x, t)dx = — —(x, t)dx
at ax

or

It9n/ \ an! \1
I I—(x,tl+—(x,tlldx=O.

Lat\ / ax\ /J

Since the integrand in (6.1) is continuous and since (6.1) holds for every
interval [x1, x2} it follows that the integrand itself must vanish (see
Problem 2.1 of Chapter VI),

(6.2)
at ax

We now introduce in our analysis an additional assumption, the validity
of which is supported by theoretical considerations as well as experimen-
tal data. According to this assumption, the flow rate q depends on x and
only through the traffic density p, i.e.

q(x, t) = G(p(x, t)),

or, simply,

(6.3) q = G(p),

for some function G. This assumption seems reasonable in view of the
fact that the density of vehicles surrounding a given vehicle indeed
controls the speed of that vehicle. The relationship between q and p
depends on many factors such as road characteristics, weather condi-
tions, speed limits, etc. In the book of Haight4 various functional relations
between q and p are discussed and compared. Some of these relations are
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derived from theoretical considerations while others are derived directly
from experimental data. The relation

(6.4)

is suggested by experimental data and is the relation that we will use
here. Pi is the maximum car density of the road (cars per unit length when
traffic is bumper to bumper) and c is the mean free speed; i.e., the mean
value of the free speeds of the cars on the highway (the free speed of a car
is the speed at which it travels whenever it is free from interference from
other cars). Normally, c is approximately equal to the speed limit of the
highway. Note that according to (6.4) q = 0 when p = 0 and when p = p'.

We now substitute (6.4) into (6.2) to obtain the equation

(6.5)
9t \ p1lax

Equation (6.5) can be simplified by dividing it by Pi and introducing the
normalized density d = PIP' to obtain

(6.6) + c(1 - 2d) = 0.
at ax

Equation (6.6) is an example of a conservation law. If the initial normal-
ized density is given by

(6.7) d(x, 0) = f(x),
then, according to Section 5, the solution of the initial value problem
(6.6), (6.7) is implicitly defined, for sufficiently small t, by the equation

(6.8) d =f(x — ct(1 — 2d)).

In fact, if f is a C' function, the solution exists as a C' function and is
implicitly defined by (6.8) as long as the condition

(6.9) 1 — 2ctf'(x — ct(1 — 2d))> 0

is satisfied. If this condition ever fails, shocks are developed in the sense
that the derivatives of the car density become infinite and the density
develops a jump discontinuity, as discussed in Section 5. If f'(x) 0 for all
x, condition (6.9) is satisfied for all t 0. This leads to the (expected)
conclusion that if the initial car density is constant or decreasing in the
direction of traffic flow no shocks ever develop and the traffic continues
to flow smoothly. However, if the initial car density is increasing over any
length of the highway, a shock eventually develops as the following
example illustrates.

Suppose that the initial car density is given by the function

113, for x � 0,

(6.10) fix) = + (5/,2)x, for 0 � x � 1,
I � x,
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the graph of which is shown in Figure 6.1. The derivative of this function
has a jump at x = 0 and x = 1 and, strictly speaking, our theory does not
apply since we required that f(x) is C1 for all x. We could of course smooth
out fix) near x = 0 and x = 1 by replacing the corners in the graph of fix)
by smoothly turning curves. However this smoothing would introduce a
lot of difficulty in the computation of the solution of our problem.
Fortunately, it turns out that the only effect of a jump in the derivative of
the initial data is a jump in the derivative of the solution across a line in
the (x, t)-plane. The solution is still implicitly defined, for sufficiently
small t, by equation (6.8). In order to evaluate the solution we will use the
fact that the solution is constant along certain lines on the (x, t)-plane (see
Section 5). Since the time variable t is always multiplied by the free speed
c, it is convenient to use Ct in place of t in our computations. If � 0, then
d = d0 = fixo) = 1/3 along the line x — ct(1 — 2d0) = x0, or

d = 1/3 along the lines Ct = 3(x — x0), x0 � 0.

Similarly,

(6.12) d = 3/4 along the lines Ct = —2(x — x0), 1 � x0.

In particular d = 1/3 along the line Ct = 3x, while d = 3/4 along the line Ct =
—2(x — 1). Since these two lines intersect at the point (x, Ct) = (2/5, 6/s), a
shock appears at that point of the (x, ct)-plane as shown in Figure 6.2. If
0 � x0 � 1, then d = d0 = 1/3 + (5/12)x0 along the line x — ct[1 — 2('/3 +
(5/12)x0)] = x0, or

1(x)

0 1

Fig. 6.1
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6 x — x0
(6.13) d = 1/3 + (5/12)x0 along the line Ct =

2
� x0 � 1.

— xo

Note that all the lines (6.13) pass through the point (x, Ct) = (2/i, 6/i) as
shown in Figure 6.2. The lines Ct = 3x and Ct = —2(x — 1) divide the upper
half of the (x, ct)-plane into four regions. In the "left" region, d = and
in the "right" region d = 3/4• In the "triangular" region with vertices (0, 0),
(1, 0) and (2/i, 6/i), d is obtained from (6.13). In fact eliminating x0 from
(6.13) yields

1 5 6x—2ct
(6.14) d

= + 12 6 — Sct'

Finally in the "shock" region the solution has a jump discontinuity and
the values of the solution cannot be computed from our analysis. Figure
6.3 shows graphs of d versus x for four values of Ct.

For other examples and further discussion of the development of
shocks in traffic flow see the article by Richards.5

6x — 2ct0�
6 — Sct

6
0 � Ct � —.

Ct

d=

3/4

Fig. 6.2
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1/3
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Ct

d = 1/3 d = 3/4

2/5

d

Ct = 0 3/4

1/3

x

0 x
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Compressible Fluid Flow under Constant Pressure
Let us consider the one-dimensional, time-dependent flow of a com-

pressible fluid under the assumption of constant pressure p. If u denotes
the fluid velocity, p the density and e the internal energy per unit volume,
the basic equations of gas dynamics are

(6.15) ug + = 0,

(6.16) pg + (PU)x = 0,

(6.17) eg + + PUx = 0.

We want to solve these equations subject to the initial conditions

(6.18) u(x, 0) = f(x)
(6.19) p(x, 0) = g(x)

(6.20) e(x, 0) = h(x)

where f, g and h are given C1 functions. According to Section 5, the
solution of the initial value problem (6.15), (6.18) always exists for suffi-
ciently small t and is defined implicitly by the equation

(6.21) u =f(x — Ut).

If f'(x) 0 for all x, the solution exists as a C' function for all t 0.
Otherwise the solution eventually develops discontinuities known as
shocks, the study of which involves generalization of the concept of a
solution (see Noh and Protter6 for details). Once U is known, it can be
substituted into equation (6.16) and the initial value problem (6.16), (6.19)
can then be solved to obtain the density p. It is to obtain a formula
for p in terms of U. To do this we note that appears in equation (6.16),
and from (6.21) we have,

f'(x — Ut)
(6.22) =

1 + tf'(x — Ut)

This suggests that a function of the form

(6.23) p
= G(x — Ut)

1 + tf'(x — Ut)

might be a solution of equation (6.16) (see also Problem 6.5). In order for
(6.23) to satisfy the initial condition (6.19), the function G must be taken
to be g. It is now left as an exercise (Problem 6.6) to show that

g(x — Ut)
(6.24) p =

1 + tf'(x — Ut)

satisfies not only the initial condition (6.19) but also the p.d.e. (6.16)
provided that the functionf is C2. In view of our uniqueness theorem (see
Section 5) concerning the solution of the initial value problem (6.16),
(6.19), we conclude that the solution of this problem must be given by
(6.24). Similarly, the solution of the initial value problem (6.17), (6.20) is
given by
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h(x — Ut) + p
(6.25) —p

1 + tf (x — Ut)

(See Problem 6.7.)

Problems

6.1. Consider the traffic flow problem (6.6), (6.7) with

0, forx�0,
(6.26) fix) = x/L, for 0 � x � L,

1, forL�x.
For this problem draw a figure like Figure 6.2 and obtain the
solution,

0 in the "left" region

d = X Ct
in the "triangular" region

L — 2ct

1 in the "right" region.

6.2. Consider the traffic problem (6.6), (6.7) and suppose thatf'(x) has a
maximum positive value at some point x1 of the x-axis,

f'(x1) = max f'(x).

Then, as discussed in the text, a shock eventually develops at some
positive time t. Let t8 be the positive time and x8 the location of the
first appearance of the shock (t8 is sometimes known as the break-
down or critical time). To compute and x8 we use the fact that the
shock first appears when the expression

1 — 2ctf'(x — ct(1 — 2d))

first becomes zero.

(a) Show that

f'(x — ct(1 — 2d)) =

along the line

x — ct(1 — 2f(x1)) =

in the (x, ct)-plane, and that therefore (x8, Ct8) must lie on this
line.

(b) Show that

Ct8
= 2f'(x1)

and

= x1
+

(1 — 2f(x1)).
2f (xi)
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(c) Refer to Figure 6.4 and show that

x8 = x0 + Ct8.

6.3. Use the formulas of Problem 6.2 to compute x8 and Ct8 for the traffic
flow problem (6.6), (6.7) with initial car density given by (a) equa-
tion (6.10); (b) equation (6.26).

6.4. Consider the traffic flow problem (6.6), (6.7) with

forx�O,
f(x) = x2, for 0 � x 1,

U, forl�x.
(a) Refer to Problem 6.2 and compute x8 and Ct8.

6.5. Show that if u is a solution of (6.15) then v = is a solution of the
equation Vt + = 0, which is equation (6.16) with p replaced by
v. In view of (6.22), this also suggests (6.23) as a possible fprm of a
solution of (6.16).

6.6. Show by direct substitution that (6.24) satisfies the p.d.e. (6.16)
provided that f is a C2 function.

6.7. Show that if e + p (p is constant), then satisfies the equation
+ = 0 which is of the same form as equation (6.16). Then use
(6.23) to obtain the solution (6.25) of (6.17), (6.20).

6.8. Consider the initial value problem for gas dynamics (6.15), (6.18),

Fig. 6.4

f(x)

1

1/2

tangent line at (x, 1(x))

(x1, f(x))
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with initial data given by

1 forx�O,
f(x)= 1—x for

0 forl�x.
Follow the analysis of the traffic flow problem in the text to obtain
the equation of the lines in the upper half (x, t)-plane along which
the solution u is constant. Draw a figure like Figure 6.2 and obtain
the solution

1 intheregionx<1,0�t,x<t

u= intheregion

0 in the region I <x, 0 � t, t <x.
Draw a figure like Figure 6.3 with graphs of u versus x at t = 0, 1/4,

1/2, 3/4, 1.

6.9. Consider an infinitely long cylindrical pipe containing a fluid. Let
the x-axis be along the axis of the pipe and suppose that the fluid is
flowing in the positive x-direction. Let p(x, t) and q(x, t) be, respec-
tively, the density (mass per unit pipe length) and rate of flow (mass
per unit time) of the fluid at position x and time t. Suppose also that
the walls of the pipe are composed of porous material allowing the
fluid to leak. Let H(x, t) denote the rate (mass per unit pipe length,
per unit time) at which the fluid leaks out of the pipe.
(a) Follow the derivation of the traffic flow conservation law (6.2)

to derive the equation

ap aq
— + — = —H.
at ax

(b) Assume that q and H actually are functions of p given by

q!p2, H=ap2

where a is a positive constant. Obtain the p.d.e. for p,

ap ap
— + p — = —ap2at ax

and its first integrals,

u1= peas, u2=
1 — apt

If p(x, 0) = I show that

p(x, t)
=
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6.10. For the initial value problem for gas dynamics (6.15), (6.18), show
that if the initial velocity distribution f(x) is nondecreasing, shocks
never develop for t � 0. On the other hand, if f'(x) < 0 over some
interval of the x-axis, a shock eventually develops at some positive
t. Follow the analysis of Problem 6.2 to derive formulas for the time
and location of the first appearance of a shock.

7. The Method of Probability Generating Functions.
Applications to a Trunking Problem in a Telephone Network

and to the Control of a Tropical Disease
We discuss in this section an important application of first order linear

partial differential equations to some problems in probability, namely to
problems that arise in the study of certain processes known as stochastic
processes. The material can be understood by students without back-
ground in probability. In the text we discuss two applications of the
method of probability generating functions and in the problems we de-
scribe applications to Poisson, Yule, Polya, birth and death, and other
stochastic processes. The main references for the material of this section
are Feller7 Chapter XVII, Sections 5—7 and Chiang,8 Chapters 2 and 3.

A Trunking Problem in a Telephone Network
We consider an idealized telephone network consisting of an infinite

number of lines (trunklines), and assume that calls originate and terminate
within the network during the time interval [0, 00) according to certain
hypotheses which we describe below. The problem to be solved is the
following. Given any non-negative integer n, find the probability that
exactly n lines are in use at time t, 0 < t < 00, assuming that the initial
probabilities 0 � n < 00, are known.

In stating the hypotheses concerning the initiation (birth) and termina-
tion (death) of phone calls within the network we will use the symbol o(h)
to denote any quantity which vanishes more rapidly than h as h —+ 0; i.e.,

[o(h)/h] = 0. The reasonableness and validity of the hypotheses are
discussed in the book of Feller.7 The hypotheses are: (i) if a line is
occupied at time t, the probability of the conversation ending during the
time interval (t, t + h) is + o(h), where is a constant; (ii) the
probability of a call starting during the interval (1, t + h) is Xh + o(h),
where X is a constant; and (iii) the probability of two or more changes
occurring (calls starting or ending) during the interval (t, t + h) is o(h).

The first step in the determination of the probabilities consists of
deriving a system of ordinary differential equations that are satisfied by

Let us suppose for a moment that t is fixed and that the probabilities
are known for all n, 0 � n <00, and let us try to determine + h),

the probability that n lines are in use at time t + h. Suppose first that n �
1. A moment's reflection should convince the reader that there will be n
lines in use at time t + h only if one of the following conditions is satisfied:
(1) at time t, n — 1 lines are in use and one call originates during the time
interval (t, t + h); (2) at time t, n + 1 lines are in use and one call
terminates during the interval (1, t + h); (3) at time t, n lines are in use and
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no change occurs in the network during the interval (t, t + h); and (4) two
or more changes occur during the interval (t, t + h). According to our
hypotheses, the probability of the last event (4) is o(h) while the probabil-
ity of (1) is

[Xh +

the probability of (2) is

(n + +

and the probability of (3) is

[1 — Xh — —

Since the contingencies (1), (2) and (3) are mutually exclusive, their
probabilities add. Therefore

+ h) = + (n +
(7.1) + (1 — Xh — + o(h).

Using (7.1) to form the difference quotient + h) — and letting
h 0, we obtain the ordinary differential equations

(7.2) = — (X + + + (n +

which must hold for all n � 1 and 0 <t < oo• For n = 0 a similar analysis
leads to the equation

(7.3) P01(t) = —XP0(t) +

Since the initial probabilities 0 � n < 00, are assumed to be
known, the problem of finding the probabilities for all t> 0 has been
reduced to the initial value problem for the infinite system of ordinary
differential equations (7.2), (7.3). The question of existence and unique-
ness of solution of this initial value problem is not easy; the interested
student can read the discussion and references cited in Feller.7 Here, we
describe a method for finding the solution of the problem by solving an
initial value problem for a first order linear partial differential equation.

The function

(7.4) G(t,s) =

is known as the probability generating function for the probabilities
As a consequence of the system of o.d.e.'s (7.2) it is easy to show that
G(t, s) must satisfy a linear first order partial differential equation. In fact,
differentiating (7.4) we get

(7.5) = = (n +
n=1 n=O

(7.6) =
tt=0
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Substitution of the expressions (7.2), (7.3) for into (7.6), followed by
rearrangement and identification of the resulting series with the series in
(7.4) and (7.5) yields the p.d.e. for G,

(7.7)
at as

On the other hand, knowledge of the initial probabilities leads to the
initial condition for G along the line t = 0 of the (t, s)-plane,

(7.8) G(O,s) = g(s),

where

(7.9) g(s) =
n=O

It is easy to obtain the solution of the initial value problem (7.7), (7.8).
The associated system of o.d.e.'s of (7.7) is

dt ds - dG
1 1) X(s— 1)G'

and two functionally independent first integrals are

(7.10) Ui = — 1), u2 =

Since u1 does not depend on G, the general integral of (7.7) is
= f(u1)

where f is an arbitrary C' function of a single variable. Substituting (7.10)
in the general integral and solving for G we obtain the solutions of(7.7),

(7.11) G(t, s) = — 1)).

The initial condition (7.8) determines the functionf. In fact setting t = 0 in
(7.11) and using (7.8) yields

g(s) = — 1),

and, consequently,

(7.12) f(s) = g(s + 1)e

Finally, substituting (7.12) into (7.11) and simplifying we obtain the
solution of the initial value problem (7.7), (7.8)

(7.13) G(t, s) = g(1 + e — 1)) exp (s — 1)(1 —

Once the probability generating function G(t, s) has been found, the
probabilities can be found from the familiar formula for the coeffi-
cients of the Taylor series (7.4),
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1 ran
(7.14) = — I — G(t, s)

n! LaSh s=O

or by obtaining the series expansion of G(t, s) in powers of s by some
other means and then identifying the coefficients of the series with

In order to illustrate the method of probability generating functions
(p.g.f.), let us suppose that exactly one line is in use at time t = 0. This
means that

(7.15) P1(O) = 1 and = 0 for n 1,

and, therefore,

(7.16) g(s) = = s.

Substitution of (7.16) into (7.13) yields the p.g.f.

(7.17) G(t, s) = [1 + — 1)] exp (s — 1)(1 —

The probabilities can be determined using formula (7.14). For n = 0
and n = 1 we have

P0(t) = G(t, 0) = (1 — exp — 1)],

= (t, 0) = + (1 — exp 1)].

Clearly the computational labor to obtain increases rapidly with n.
An alternate method for obtaining directly from (7.17) is outlined in
Problem 7.4.

A more realistic model of a telephone network with a finite number of
lines can be analyzed in a similar way. For details see Feller7 Chapter
XVII, Section 7.

A Problem in the Control of a Tropical Disease
Schistosomiasis is a parasitic infection that is estimated to affect more

than two hundred million people in tropical and subtropical countries of
the world. It is characterized by long term debility which is thought by
many to be a significant obstacle to the advancement of many underdevel-
oped countries where large segments of the population are more or less
permanently infected. The persistence of this infection in a locality
depends on a complex cycle of events involving humans, certain parasitic
flatworms (schistosomes) and particular species of snails. A probabilistic
study of this cycle of events has been carried out in a paper by Nasell and
Hirsch.9 The results of this study make possible the comparison of the
relative effectiveness of various procedures aimed at control or eradica-
tion of the disease. We present here a problem that appears in the paper9
concerning the determination of a certain probability generating function.
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The probability generating function G(t, s) must satisfy the p.d.e.

(7.18) + - 1) =1 vY(t)(s - 1)G
at 3s 2

and the initial condition

(7.19) G(t0, s) =

t the (t,s) plane. Y(t) is a given continuous function,
and v are constants and m is a nonnegative integer. It is an easy exercise

(see Problem 7.8) to obtain the first integrals of (7.18),

(7.20) = — 1), u2 = Ge 2

where

/3(t) = dr.

Now, the general integral of (7.18) is

(7.21) — 1)),

where f is an arbitrary C' function. Solving (7.21) for G we obtain the
solutions of (7.18),

(7.22) G(t, s) = — 1)).

The initial condition (7.19) determines the functionf since it requires that

(7.23) = — 1)).

Setting z = — 1) we have s = 1 + and (7.23) yields

1(z) = (1 + exp
].

Therefore

t(s 1)) = [1 + e t_t0)(s —

1)

and substituting in (7.22) we obtain the solution of the initial value
problem (7.18), (7.19),

G(t,s) = [1 + e_11(tt0)(s —

(7.24) exp [/3(t) - - 1)).
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Problems

7.1. Derive equation (7.3).
7.2. Derive (7.7) from (7.4), (7.5) and (7.6). [Note that (7.5) expresses

aG/as in two ways.]
7.3. Derive (7.13) from (7.11) and (7.12).
7.4. For fixed t, equation (7.17) has the form

G(t,s) = (a +

where a, b, c, d are constants depending on t. Expand G in a Taylor
series in s using the expansion for e8 and derive the formulas

1 1 /X\n-1
= — — (—) (1 — e — +

n! /L \/L/

x exp — 1)].

for 0 � t and n = 0, 1, 2

7.5. For the telephone network discussed in this section find the proba-
bility generating function and the probabilities if at time t = 0,
(a) two lines are in use, (b) m lines are in use, where m is a positive

integer.
7.6. The expectation (mean value) E(t) of the number of telephone lines

in use at time t is defined by

E(t)
=

It is a weighted mean of the number of lines that may be in use at
time t, weighted by the corresponding probabilities. Show that

E(t) = aG(t,s)

and calculate E(t) if one line is in use at time t = 0.
7.7. In the formula of Problem 7.4 let t 0o to show that

-- /X\n
e

urn
= n!

which is the Poisson distribution with parameter
7.8. Derive the first integrals (7.20) of equation (7.18).
7.9. The Poisson process. In many physical processes the occurrence of

an event at a particular moment is independent of time and of the
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number of events that have already taken place. Examples are
accidents occurring in a city, the splitting of atoms of a radioactive
substance, breakage of chromosomes under harmful irradiation and
phone calls arriving at a switchboard. Let X(t) denote the total
number of events occurring during the time interval (0, t) and let

denote the probability that X(t) = n. A process is said to be a
Poisson process if, for any t � 0, (i) the probability that an event
occurs during the interval (t, t+h) is Xh + o(h) where A is a
constant, and (ii) the probability that more than one event occurs
during (t, t+h) is o(h).
(a) Derive the system of o.d.e.'s

P0'(t) = —XP0(t)

= — + n = 1, 2

(b) Show that the p.g.f. G(t,s) = satisfies the initial value
problem,

= —X(1 — s)G
at

G(0, s) = 1.

(Note that P0(O) = I and = 0 for n = I, 2 )
(c) Solve the initial value problem for G to show

G(t,s) =

and obtain the probabilities

' / , n=O,1,2,...

(This is the Poisson distribution with parameter Xt.)
(d) Show that the expectation E(t) = At (see Problem 7.6).

7.10. The time-dependent Poisson process. This is a Poisson process in
which A is not constant but is instead a function of t, A = X(t).
Follow the instructions of Problem 7.9 for this case and show that
the formulas for G(t, s), and E(t) are obtained from those of
Problem 7.9 by replacing Xt with

7.11. The Yule process. This process was first studied by Yule in connec-
tion with the mathematical theory of evolution. It is a simple
example of what is known as a pure birth process. Consider a
population of members (such as bacteria) which give birth to new
members but do not die (bacteria may do this by splitting). Assume
that during any short time interval (t, t + h) each member has
probability Ah + o(h) to create a new member (X is a constant), and
that members give birth independently of each other. Then, if at
time t the population size is n, the probability of increase of the
population by exactly one during (t, t + h) is nXh + o(h). Assume
also that at time t = 0 the population size is n0, so that if is the
probability that the population size is n at time t, then
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= 1 and = 0 for n # no.

(a) Derive the system of o.d.e.'s,

=

= + (n — n> no.
(b) Introduce the p.g.f. G(t,s) = and show that it must

satisfy the initial value problem

aG aG— + As(1 — s) — = 0
at as

G(0, s) = 5flo

(c) Show that
r

G(t s)=sfbl
Li — s(i —

(d) Show that the expectation E(t) = is

E(t) =

This is the familiar exponential population growth.
7.12. The time-dependent Yule process. This is a Yule process in which A

is a function of t, A = A(t). Follow the instructions of Problem 7.11
for this case and show that the formulas for G(t, s) and E(t) are
obtained from those of Problem 7.11 by replacing At with X(T)dT.

7.13. The Polya process. This is a pure birth process for which it is
assumed that if at time t the population size is n, the probability of
increase of the population by exactly one during the interval (t, t +
h) is + o(h) where

A + Xan

A a constants. Note that a = 0 corresponds to a Poisson
process. Assume that initially the population size is n0.
(a) Derive the system of o.d.e.'s

A + Aan0
=

— 1 + Aat

A+Aan A+Aa(n—1)
=

— 1 + Xat
+

1 + Aat
fl > fl0.

(b) Introduce the p.g.f. G(t, s) and show that it must

satisfy the initial value problem

aG aG
(1 + Aat) — + Aas(1 — s) — = —A(1 — s)G

at as

G(0, s) = 5flo•
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(c) Show that

G(t,s)
= +

+ Aat —

7.14. The birth and death process. This process allows for a population to
decline as well as to grow, and therefore it provides a more realistic
model for biological problems. Let X(t) denote the size of popula-
tion at time t and denote the probability that X(t) = n. The
basic hypotheses are the following: If X(t) = n, then during the
interval (t, t + h): (i) the probability of one birth occurring is
+ o(h); (ii) the probability of one death occurring is + o(h);
and (iii) the probability of more than one change (birth or death) is
o(h). Show that the must satisfy the system of o.d.e.'s,

P0'(t) = — [X0(t) + +

= — +

+ + n � 1.

7.15. In the telephone network discussed in this section the process of
initiation and termination of calls may be considered as a birth and
death process with the population size being the number of lines in
use. Show that in this case = A and = n and verify that
the system of o.d.e.'s of Problem 7.14 becomes system (7.2), (7.3).

7.16. A birth and death process with linear growth. Consider a population
of living elements, such as bacteria, that can split or die. During any
short time interval (t, t + h) the probability of any living element
splitting into two is Xh + o(h) and the probability of it dying is +
o(h), where A and are constants. Assume that at t = 0 the
population size is n0.
(a) Show that in the notation of Problem 7.14, = nA and

= and write down the system of o.d.e.'s and the initial
conditions for the

(b) Show that the p.g.f. G(t, s) must satisfy the initial value prob-
lem,

aG aG— + (1 — s) — — = 0
at as

G(0, s) = S"°.
(c) If A obtain the solution

1(As — + p(1 —
s)

= — + A(1 —

and show that the expectation is

E(t) =

(d) If A = obtain the solution
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G(t,s)
= .{a(t) + [1 —

1—ct(t)s j

where a(t) = Xt/(1 + At), and show that the expectation is
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CHkPTER IV

Series solutions

The Cauchy-Kovalevsky
theorem

In this chapter we study one of the fundamental results in the theory of
partial differential equations, the Cauchy-Kovalevsky theorem. This theo-
rem asserts the existence of an analytic solution of the initial value
problem for a p.d.e. when all functions involved in the problem are
analytic. In Section 1 we review the Taylor series of a function of one or
more variables and define analytic functions. In Section 2 we describe
first how to compute the coefficients of the Taylor series of the solution of
the initial value problem for a first order p.d.e. and then state the Cauchy-
Kovalevsky theorem for this problem. In the problems of the second
section we indicate the statement of the Cauchy-Kovalevsky theorem for
equations of higher order and for systems of equations.

1. Taylor Series. Analytic Functions
Let f be a function of a single variable x in an open interval I of R1

and let x0 be any point of I. The series
00

J(1.1) (x — x0)
n=O n!

is called the Taylor series of the function f about the point x0. In (1.1),
denotes the nth derivative of 1. For an arbitrary C00 function the Taylor
series (1.1) may not converge at all, or, if it does converge, it may not
converge tof(x) (see Problem 1.1). The special C00 functions I which have
Taylor series converging to f(x) for all x near x0, are called analytic at x0.

Definition 1.1. Let f E C00(f), where I is an open interval of R', and let
x0 be any point of I. If the Taylor series (1.1) off about the point x0
converges to 1(x) for every x in a neighborhood of x0, then I is called
analytic at x0. 1ff is analytic at every point of I then fis called an analytic
function in the interval I.

96
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The Taylor series of the function 1(x) = ex about the origin is

n=O

and it is usually shown in courses on elementary calculus that this series
converges to ex for every x E R'. Hence the function ex is analytic at the
origin. In fact it is analytic on the whole real line R' and we can write

9= xER'.
n=O

Similarly, the functions sin x and cos x are analytic on R' and

x3 x5 xER'

x2 x4cosx=1——+——... xER'.
2! 4!

It is almost obvious that any polynomial is an analytic function on R1
(see Problem 1.3). The function 1(x) = (1 — x)' is analytic for all x # 1
and its Taylor series about the origin converges to 1(x) in the interval f x
<1,

xI<1.
1 —x

We next consider functions of several variables. Let f be a function
defined in some domain fl of and let x° be any point of fl. The series

fla1 0
1 2... 0 0(1.2) (x1 — x 1)aI(x2 — X2)a2 . . . — x
a1!a2! . . .

is called the Taylor series off about x°. In (1.2), = a non-
negative integer, j = 1, . .. , n. Thus

The summation in (1.2) is taken over all n-tuples of non-negative integers
(a1 an). The series (1.2) can be written in a shorter form if we
introduce the notation

a=(a1,a2,...,

a = a1 + a2 + . . +
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Then the Taylor series off about x° can be written in the form
Daf(x0)

(x —
a!

As an example, if n = 2 the first few terms of the Taylor series (1.3) are

f(xI, + D1f(xI, — + D,ftxl, —

+ - xI)2 + D1D2f(x?, - X?)(X2 -

+ — +

We have written out only the terms of order 2 (i.e., 0 a = a1 + a2
2) and the dots stand for terms of order 3 a 3).
Just as in the case of functions of a single variable, the Taylor series

(1.3) of an arbitrary function f may not converge at all, or, if it does
converge, it may not converge to 1(x). The special functions I which
have Taylor series converging tof(x) for all x near x°, are called analytic at
xo.

Definition 1.2. Let f E where fi is a domain in and let x° be
any point of fi. If the Taylor series (1.3) of f about x° converges tof(x) for
every x in a neighborhood of x°, then I is called analytic at x°. 1ff is
analytic at every point of fi then I is called an analytic function in fi.

The Taylor series for the function

fix1, x2) =

about the origin is

a! apa2=O a1!a2!

and this series converges for all (x1, x2) E R2. The function is analytic
in the whole of R2 and we can write

= _L.. (x1, x2) E R2.
a1,a2=O a1!a2!

The function cos(2x1 — x2 + x32) is analytic in the whole of R3, while the
function

is analytic in except on the unit sphere. Finally, all polynomials in n
variables x1, x2 are analytic in Problem 1.8 indicates simple
ways for recognizing analytic functions.

Problems

1.1. Let f be a function of a single variable defined by
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(0 for x�Ofix) = for x> 0.

Prove that = 0 for all n = 0,1 Is this function analytic at
the origin?

1.2. For each of the functions below write down the first five terms of
their Taylor series about the indicated point x0 and describe the
largest interval containing x0 in which they are analytic.

(a) 1(x) = log x, x0 = 1.

x0=O.

(c) 1(x) = cos x, x0 =

(d) f(x) = sin 2x, x0 = 0.

1.3. What is the Taylor series of the polynomial

a0 + aix + a2x2 + . +

about the origin?

1.4. It is often possible to obtain the Taylor series of a given function by
using known Taylor series of simpler functions. For example, from

x3 x5
sin x = x — + —

we obtain

(2x)3 (2x)5
sin 2x = (2x) — + —

= 2x — x3 + x5 —

Find the Taylor series of the following functions about the origin.

(a) cos 3x2

(b)
1

(c)

1.5. For each of the functions below write down the terms up to order 2
(i.e. 0 � I � 2) of their Taylor series about the origin

(a) f(x1, x2) = 4 sin (x1 + x2) — 4
(b) f(x1, x2, x3) = + (x1 — x2)2

(c) f(x, y) = x log (1 + x + y) — y2.

1.6. Use the hint in problem 1.4 to obtain the Taylor series of the
following functions about the origin.
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(a) f(x1, x2) =
1 —

(b) f(x1, x2, x3) = ex1x2x3

(c) f(x1, x2) = sin (x1x2)

1.7. Use the function in problem 1.1 and the hint in problem 1.4 to
construct a function of n variables which is in but not analytic
at the origin.

1.8. The following rules are useful for recognizing analytic functions:
Finite sums and products of analytic functions are analytic; the
quotient of two analytic functions is analytic except possibly at
points where the denominator vanishes; compositions of analytic
functions are analytic. Use these rules to determine the sets of points
where the following functions are analytic.

(a) 1(x) = x2 — 2x + cos 4x (b) 1(x) = tan x

1+x2
(c) 1(x) = (d) f(x, y) = x sin (xy) — cos y2

(x — 2)(x + 1)

(e) f(x,
= 1 + + Y (f) f(x, y) =1-xy

(g) fix, y, z) = log (x + y + z). [Hint: log x is analytic for x > 0.1

2. The Cauchy-Kovalevsky Theorem
In this section we discuss a method of solution of the initial value

problem for a partial differential equation by using Taylor series. The
method consists of computing the coefficients of the Taylor series of the
solution using the initial data and the partial differential equation. Of
course this method can be useful only if the solution of the problem is an
analytic function. The Cauchy-Kovalevsky theorem gives conditions un-
der which the initial value problem has a solution which is an analytic
function.

Let us consider first the following initial value problem for a first order
ordinary differential equation in the unknown u and independent variable

= F(t, u)

(2.2) u(O) = u0.

Here u0 is a given number and F is a function of two variables t and u. We
are looking for the solution u(t) of problem (2. 1)-(2.2) defined in some
interval of the t-axis containing the point t = 0. Let us assume that the
function F is analytic in a neighborhood of the point (t, u) = (0, u0) of R2,
i.e., F has a Taylor series which converges to F(t, u) for every point (t, u)
in a neighborhood of the point (0, u0). Then the Cauchy-Kovalevsky
theorem asserts that the initial value problem (2. 1)-(2.2) has a solution u(t)
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which is defined and analytic in an interval containing the point t = 0. In
order to find the Taylor series for u(t) about the point t = 0, we must
compute the values of u and all its derivatives at t = 0. We can do this
using equations (2.1) and (2.2). In fact from (2.2) we have

u(0) =

and substituting t = 0 and u = u0 into (2.1), we get

= F(0, u0).

To find the second order derivative at t = 0 we differentiate (2.1) with
respect to t,

= u) + u)uU),

and substitute t = 0 and the previously obtained values of u and at t =
0,

z12)(0) = u0) + u0)F(O, u0).

Next, we differentiate (2.1) twice with respect to t and then substitute t =
o and the previously obtained values of u, and at t = 0 to get
It should be clear now that continuing in this way we can compute the
values of u and all its derivatives at t = 0. The Cauchy-Kovalevsky
theorem asserts that the series

converges for all t in an open interval I containing the point t = 0 and
defines the solution

(2.3) u(t) =
n=O

of the initial value problem (2. 1)-(2.2) in I.
Let us consider next the following initial value problem, or Cauchy

problem, for a first order partial differential equation in the unknown u
and two independent variables t and x,

(2.4) = F(t,
at \ ax

u(O, x) =

Note that the p.d.e. (2.4) is not the most general p.d.e. of the first order.
The variable t plays a special role in two ways. First, the partial derivative
au/at appears in the equation and, second, the equation has been solved
for this derivative. The function F(t, x, u, p) is a function of four variables
defined in some domain in R4. In the initial condition (2.5) the given
function 4 is defined on some interval C of the x-axis containing the
origin. Again, note that the initial curve C is not an arbitrary smooth curve
in the (t, x)-plane (as was the case in the initial value problems considered



102 IntroductIon to Partial Differential Equations

in Chapter III), but it is special in that it lies on the x-axis (t = 0). We seek
a solution u(t, x) of the Cauchy problem (2.4)-(2.5) defined for (t, x) in
some domain fi of the (t, x)-plane containing the initial curve C (see Fig.
2.1).

Let us assume first that the given function is analytic in a neighbor-
hood of the origin of the x-axis. Then, from the initial condition (2.5) we
can compute all the partial derivatives of u with respect to x at the origin,

an"
— (0 0) = n = 0 1 2
ax"

Let us assume also that the function F is analytic in a neighborhood of the
point (0, 0, 4(O), of R4. Then the Cauchy-Kovalevsky theorem
asserts that the problem (2.4)-(2.5) has a solution u(t, x) which is defined
and analytic in a neighborhood of the origin of the (t, x)-plane. In order to
find the Taylor series for u(t, x) about the origin, we must compute the
values of all the partial derivatives of u at the origin. We can do this using
(2.4) and (2.5). We have already seen that the derivatives of the form
a"u/ax" can be computed from the initial condition (2.5). Substituting in
(2.4) t = 0, x = 0 and the previously obtained values of u and au/ax at (0,0)
we obtain the value of the derivative au/at at the origin,

(0, 0) = F(0, 0, 4(0),

To obtain the value of a2u/axat we first differentiate (2.4) with respect to x,

Fig. 2.1

x
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a2u— = F2(t, x, u,
axat

+ F3(t, x, u, + F4(t, x, u,

and then substitute t = x = 0 and the previously obtained values of u,
and at (0,0). Here F3 denotes the partial derivative of F with respect to
its jth variable, j = 1, 2, 3, 4. To obtain a3u/49x2at we differentiate (2.4)
twice with respect to x and substitute t = x = 0 and the previously
obtained values of u, and at (0, 0). Continuing in this manner
we can obtain the values of all partial derivatives at, n = 0, 1, 2,
• . ., at (0, 0). Next, to find t92U/i3t2 we differentiate (2.4) with respect to t,

ä2u
= x, u,

+ F3(t, x, u, + F4(t, x, u,

and substitute t = x = 0 and the previously obtained values of u, u1 and
at the origin. It should be clear now that by successively differentiating

(2.4) with respect to t and x and substituting the previously obtained
values of u and its derivatives, we can obtain the values of all partial
derivatives of u at the origin.

The Taylor series for u(t, x) about the origin is

u(0, 0)

(at.ax)

where the summation is taken over all pairs (as, of non-negative
integers. The Cauchy-Kovalevsky theorem asserts that this series con-
verges for all (t, x) in some neighborhood U of the origin and defines the
solution

(2.6) u(t, x) =
0)

(at.ax)

of problem (2.4)-(2.5) in U. More precisely, the function defined by (2.6)
satisfies the p.d.e. (2.4) for every (t, x) in U and the initial condition (2.5)
for every point (0, x) of C contained in U (see Fig. 2.2).

We will give the formal statement of the Cauchy-Kovalevsky theorem
for the following initial value problem (or Cauchy problem) involving a
first order p.d.e. in one unknown u and n + 1 independent variables t, x1,
...,xn,

au
(2.7) = F(t, x1 u,

(2.8) u(0, x1 = 4(x1 xe).

In the p.d.e. (2.7) the function F(t, x1 u, Pi is a function
of 2n + 2 variables. Again note the special role of the variable t in (2.7);
the derivative appears in the equation and the equation is solved for this
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x

Fig. 2.2

derivative. In the initial condition (2.8) the given function 4) is defined in
some region S of the (x1, x2 xn)-space. We look for a solution u(t, x1,

of the Cauchy problem (2.7)-(2.8) defined for (t, x1, . . . , x,) in
some domain fl of containing the region S on the hyperplane t = 0 on
which the initial condition (2.8) is prescribed (see Fig. 2.3 where n = 2).

Theorem 2.1 (Cauchy-Kovalevsky). Suppose that the function 4) is ana-
lytic in a neighborhood of the origin of R1L and suppose that the function F
is analytic in a neighborhood of the point (0, 0, . . . , 0, 4)(O, ... , 0),

0), ... , (0 0)) of Then the Cauchy problem (2.7)-
(2.8) has a solution u(t, x1, ... , x,j which is defined and analytic in a neigh-
borhood of the origin of and this solution is unique in the class of
analytic functions.

The theorem makes two assertions: (i) there exists an analytic solution
in some neighborhood of the origin and (ii) this solution is unique in the
class of analytic functions. In more precise language, the existence asser-
tion states that there exists a function u(t, x1, . . . , which is defined and
analytic in a neighborhood U of the origin in and is such that at
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x2

every point (t, x1, . . . , of U, u(t, x1, . .. , satisfies the p.d.e. (2.7)
and at every point (0, x1, ..., of the part of S contained in U, it
satisfies the initial condition (2.8). The uniqueness assertion states that
two analytic solutions of (2.7)-(2.8) must necessarily coincide in some
neighborhood of the origin.

We do not give the details of the proof of the Cauchy-Kovalevsky
theorem here but refer the interested reader to the book of Petrovskii.'
The "existence" proof consists of showing that the coefficients of the
Taylor series

(2.9)
. . ... 0)

(a,, a,,.

can be computed from (2.7) and (2.8) (as we have done for the case n = 1)

and then proving that the series (2.9) converges in some neighborhood of
the origin and that it satisfies (2.7) and (2.8) in this neighborhood. The
proof of uniqueness of an analytic solution follows immediately by noting
that any two analytic solutions must have Taylor series about the origin
with coefficients exactly the coefficients in (2.9). Since the coefficients in
(2.9) can be computed in a unique way from (2.7) and (2.8) it follows that
any two analytic solutions must have the same Taylor series about the
origin and hence they must coincide in some neighborhood of the origin.

Fig. 2.3
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Example 2.1. Find all terms of order less than or equal to three in the
Taylor series about the origin of the solution of the initial value problem

(2.10) u1 =

(2.11) u(0, x) = I + x2.

In this problem 4)(x) = 1 + x2 and hence the function 4) is analytic in a

neighborhood of the origin of the x-axis (in fact it is analytic on the whole
x-axis). Here 0) = 4'(O) = 0. Moreover F(t, x, u, p) = up and this
function is analytic in a neighborhood of (0, 0, 1, 0) of R4 (in fact it is
analytic in the whole of R4). Hence, by the Cauchy-Kovalevsky theorem,
the Cauchy problem (2.10)-(2. 11) has an analytic solution in a neighbor-
hood of the origin of the (t, x)-plane. We must compute all derivatives of u
of order 3 at the origin. From (2.11) we have

u(0, x) = 1 + x2, x) = 2x, x) = 2, x) = 0

and hence

u(0, 0) = 1, 0, 0) = 0) = 0.

From (2.10) we have

u = +

and using the previously obtained values we get

Ut(O, 0) = 0, 0) = 2, 0) = 0.

Again from (2.10) we have

= + = + +

and using the previously obtained values we get

0) = 2, 0) = 0.

Finally from (2.10) we have

= + +
and hence

0) = 0.

The Taylor series for U(t, x) about the origin is

0)
(2.12) u(t, x) = 1

= 1 + t2 + 2tx + x2 +

where the dots stand for terms of order 4.

Since equation (2.10) is a quasi-linear first order equation, the theory
developed in Chapter III is also applicable. According to Theorem 3.1 of
Chapter III, there exists a unique solution of the initial value problem
(2.10), (2.11) in a neighborhood of the point (t, x) = (0, 0) (see Problem
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2.4). Moreover, this solution can actually be found by the methods of
Chapter III and is

1 + x2
(2.13) u(t, x) = 2

1 — 21x + \/1 — 4tx — 4t2

The Taylor series of u(t, x) about (0, 0) can be computed directly from
(2.13), and it can be verified that the terms of order 3 are indeed given
by (2.12).

The Cauchy-Kovalevsky theorem is a theorem of fundamental impor-
tance in the theory of partial differential equations. However its practical
usefulness is often limited by the stringent requirement that the initial data
and the right-hand side of the equation must be analytic and by the fact
that it asserts the existence and uniqueness of the solution only in a
(possibly very small) neighborhood of the origin.

We have stated the Cauchy-Kovalevsky theorem for initial value prob-
lems involving a single first order partial differential equation. In the
problems we indicate the statement of the theorem for equations of higher
order and for systems of equations in more than one unknown.

Problems

2.1. For each of the following initial value problems, verify first that the
assumptions of the Cauchy-Kovalevsky theorem are satisfied and
then find the terms of order 2 of the Taylor series of the solution
about the origin. The answers are shown in brackets.

(a) Ut = u2 + u(O, x) = 1 + 2x

[u(t, x) = 1 + 3t + 2x + St2 + 4tx + ...]

(b) = i4; ii(O, x) = 1 + 2x — 3x2

(c) Ut = (sin u(O, x) = + x

in ...]

(d) Ut = ii(O, x) = 1 — x + x2

[U(t,x)=l—t—x+t2+2tx+x2+...J
(e) Ut = ii(O, x1, x2) = x1 + x2 —

[U(t, x1, x2) = x1 + x2 + t — 212 — 4tx1 — + •. .1

(f) Ut = U2 + U(O, x1, x2, x3) = x1 + x2 + — + x2x3

[U(t, x1, x2, x3) = x1 + x2 +

2.2. Consider the initial value problem
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Ut = sin u(O, x) = x.

Verify that the assumptions of the Cauchy-Kovalevsky theorem are
satisfied and obtain the Taylor series of the solution about the
origin. (Surprise!)

2.3. Consider the Cauchy problem

Verify that the assumptions of the Cauchy-Kovalevsky theorem are
satisfied and show that

\r2 IT
u(t, x) = -4x + Tt +

—
+

— ±! — +
4 \31 2\3/ 8 \31

where the dots stand for terms of order 4.
2.4. (a) Restate the initial value problem (2.10), (2.11) in terms of the

notation used in Chapter III and verify that the assumptions of
Theorem 3.1 of Chapter III are satisfied.

(b) Derive the solution (2.13) by the methods of Chapter III.
(c) Obtain (2.12) directly from (2.13).

2.5. For the initial value problem (a) in Problem 2.1, use the methods of
Chapter III to obtain the solution

1 + 2(x + t)u(t,x)=
1 — t — 21(x + t)

Obtain directly from this exact solution the terms of order 2 of its
Taylor series.

2.6. For the initial value problem (c) in Problem 2.1, use the methods of
chapter III to obtain the relation

U = + X + y sin U,

which implicitly defines the solution u in a neighborhood of (t, x) =
(0, 0). Obtain directly from this relation the terms of order 2 of the
Taylor series of the solution.

2.7. In this section we have considered only initial value problems in
which the initial conditions are prescribed in a region of the hyper-
plane t = 0 containing the origin of the x-space. It is easy to show
that a problem in which the initial condition is prescribed in a region
of the hyperplane t = t° containing the point x = x° of the x-space,
can be reduced to a problem of the above type by introducing a
translation of coordinates.
(a) Show that the initial value problem



Cauchy-Kovalevsky Theorem 109

(2.14) = F(t, x, u, us),

(2.15) u(t0, x)

where is defined in an interval of the x-axis containing the
point x = x0, can be reduced to the problem (2.4), (2.5) by
introducing the new independent variables

t' = t —to, X' = X — Xo.

(b) For the initial value problem (2.14), (2.15) state the Cauchy-
Kovalevsky theorem asserting the existence of an analytic solu-
tion U(t, x) in a neighborhood of the point (t0, x0).

2.8. Consider the following Cauchy problem for a second order p.d.e. in
two independent variables,

(2.16) Utt = F(t, x, U, Ut, ui,,

(2.17) U(0, x) =

(2.18) x) =

Note that (2.16) is not the most general p.d.e. of the second order.
The variable t is special in two ways. The derivative which is the
highest possible derivative with respect to t, appears in the equa-
tion, and the equation is solved for this derivative. The functions
and known as the initial data, are defined on an interval C of the
x-axis containing the origin (see Fig. 2.1). C is known as the initial
curve. From the initial conditions (2.17) and (2.18) it follows that

afl+1U
— (0,0) = (0,0) = n = 0, 1,2

The statement of the Cauchy-Kovalevsky theorem for the Cauchy
problem (2.16), (2.17), (2.18) is: Suppose that and are analytic
in a neighborhood of the origin of R' and suppose that the function F
is analytic in a neighborhood of the point (0, 0,

of R7. Then the Cauchy problem (2.16), (2.17),
(2.18) has a solution u(t, x) which is defined and analytic in a
neighborhood of the origin of R2 and this solution is unique in the
class of analytic functions.

Under the assumptions of this theorem show that it is possible to
find the Taylor series for u(t, x) about the origin, using the initial
conditions (2.17), (2.18) and the p.d.e. (2.16).

2.9. Consider the Cauchy problem for the wave equation

Utt =

U(0, x) = 40(x)

x) = 41(x).

Show that this problem is a special case of the general problem
discussed in Problem 2.8. What does the Cauchy-Kovalevsky theo-
rem say for this problem?
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2.10. Consider the Cauchy problem for Laplace's equation

+ U111, = 0

u(x, 0) =

u11(x, 0) =

Show that this problem is a special case of the general problem
discussed in Problem 2.8. What does the Cauchy-Kovalevsky theo-
rem say for this problem?

2.11. Consider the initial value problem for the heat equation,

Ut = Uxx

u(0, x) =

Show that this problem is not a special case of the general problem
discussed in Problem 2.8 and that hence the Cauchy-Kovalevsky
theorem is not applicable.

2.12. Consider the following Cauchy problem for a system of two first
order partial differential equations in two unknowns u, v and two
independent variables x, 1,

(2.19) = F(t, x, U, V, vs),

(2.20) = G(t, x, U, V, vs),

(2.21) U(0, x) = 4(x), v(0, x) =

Note carefully the special role of the independent variable t: the
derivatives Ut and Vt appear in the system and the system is solved
for these derivatives. The statement of the CaUchy-Kovalevsky
theorem for this problem is: Suppose that 4(x) and are analytic
in a neighborhood of the origin of R1 and suppose that the functions
Fand G are analytic in a neighborhood of the point (0, 0, 4(0), q(0),

LI,(1)(0)) of R6. Then the Cauchy problem (2.19), (2.20), (2.21)
has a solution {U(t, x), V(t, x)}, with each function U(t, x) and v(t, x)
being defined and analytic in a neighborhood of the origin of R2, and
this solution is unique in the class of analytic functions.

Show that it is possible to find the Taylor series for U and v about
the origin by using the equations (2.19), (2.20) and the initial condi-
tions (2.21).

2.13. Consider the initial value problem for a conservation law,

+ = 0,

U(X, 0) = 1(x),

which was discussed in Section 5 of Chapter III. Assume that a(U)
and fix) are analytic functions of one variable for all values of that
variable.
(a) Derive the series solution

I

(2.22) U(x, y) = fix) + —i— _Jy"
n dx dx
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which is valid for sufficiently small values of y [Hint: Start
with the series expansion

b,(x)
u(x, y) = b0(x) + — yfl

where
y)

=

_______

9yfl
11=0

Then use induction to prove that for n � 1,

a11 an—' I i3U
=

I
(b) If a(u) = cu and f(x) = where c and k are constants,

compute the leading terms of the series (2.22),

u(x, y) = + ckxe + (3x2 — + • . .1.

The series (2.22) is known as Lagrange series. It has been used
by Banta2 in studying sound waves of finite amplitude and by Ames
and Jones3 in studying a Monge-Ampére equation in connection
with anisentropic flow of gas and longitudinal wave propagation in a
moving threadline.
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1. Petrovskii, I. 0.: Partial Differential 173, 1965.
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2. Banta, E. D.: Lossless propagation of Ampere equation, J. Math. Anal. AppI.,
one-dimensional finite amplitude sound 21: 479—484, 1968.
waves, J. Math. Anal. App!., 10: 166—



CHkPTER V
Linear partial differential

equations
Characteristics, classification

and canonical forms

In this chapter we define and discuss some general concepts associated
with linear partial differential equations. In Section 1 we use a convenient
notation to write down the general form of a linear p.d.e. and we define a
characteristic surface for such an equation. In Section 2 we describe the
characteristic surfaces of several important equations which will be stud-
ied in this book. In Section 3 we discuss the importance of characteristics
by means of a very simple example. Specifically, we illustrate with this
example how the characteristics are exceptional for the Cauchy problem,
how they may be carriers of discontinuities of a solution or of its deriva-
tives, how they play a crucial role in solving first order equations and how
they can be used to introduce new coordinates in terms of which the
equation has a particularly simple form called the canonical form of the
equation. In Section 4 we discuss the theory and method of solution of the
initial value problem for first order equations. In Section 5 we discuss the
general Cauchy problem and state the Cauchy-Kovalevsky theorem and
Holmgren's uniqueness theorem. In Section 6 we show how a first order
equation can be reduced to its canonical form by a transformation of coor-
dinates. Section 7 is devoted to second order equations in two independent
variables. These equations are classified into three distinct types. Any
equation of a particular type can be reduced by a transformation of coordi-
nates to a canonical form associated with its type. Section 8 is devoted to
the classification and reduction to canonical form of second order equa-
tions in two or more independent variables. Finally, in Section 9 we de-
scribe and illustrate the principle of superposition.

1. Linear Partial Differential Operators and Their
Characteristic Curves and Surfaces

We recall the notation introduced in Chapter IV. Byx = (x1, . . ., we
will denote a point in and by the partial differentiation operator

112
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Let a = (a1' ..., denote an n-tuple of non-negative integers.
Then we define

and

Let al denote the sum of the components of a, al = a1 + a2 + +
a monomial of order al in the coordinates Xb ..., and is

a partial differentiation operator of order al. In the old notation
ala

...

For example, if n = 3 and a = (2, 1, 3), then al = 6, xa = is a
monomial of order 6 and

= =
t3x?t3x2ax33

A linear partial differential equation of order m in is an equation of
the form

(1.1) a0Dau =1

where the aa and f are functions of x E The function aa is called the
coefficient of the term aaDau and f is called the right hand side of the
equation. The summation on the left is taken over all possible values of
the "index vector" a with al m. Thus m is the order of the derivatives
of highest order appearing in the equation.

The linear partial differential operator on the left hand side of equation
(1.1) will be denoted by P(x, D),

(1.2) P(x, D) = aa(x)Da.

If the coefficients aa are constant, we write P(D) instead of P(x, D).

Example 1.1. In R2, the equation

(1.3) + sin (x1 + x2)

is a second order linear partial differential equation. The coefficients are

= 1, = sin x1x2, at" "(x) =

= 0, d°' "(x) = x1, =

and

f(x) = cos (x1 + x2).

The operator in equation (1.3) is
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(1.4) P(x, D) = + sin — + x1D2 +

Example 1.2. The general linear first order partial differential operator
in has the form

P(x, D) = a"'° + d°"°
+ + +

Of course we may prefer to use simpler notation. For example, the
general linear first order operator in R2 is

(1.5) P(x, D) = a1(x)D1 + a2(x)D2 + c(x).

Example 1.3. The general linear second order partial differential opera-
tor in R2 has the form

P(x, D) = + +

+ + d°'°(x)D2 +

Some important examples with constant coefficients are the Laplacian
operator in two variables

(1.6) P(D) = IYf +

the wave operator in one space variable

(1.7) P(D) = —

and the heat operator in one space variable

(1.8) P(D) = IYf — D2.

In (1.7) and (1.8), x1 is a space variable and x2 is a time variable. We plan
to study these three operators in great detail. Another example is the
Tricomi operator that appears in hydrodynamics,

(1.9) P(x, D) = +

Example 1.4. The general linear second order partial differential opera-
tor in R3 has the form

P(x, D) = + +

+ + +

+ + + +

Important special cases with constant coefficients are the Laplacian in
three space variables

(1.10) P(D) = + +

the wave operator in two space variables

(1.11)

and the heat operator in two space variables

(1.12) P(D) = + — D3.
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In (1.11) and (1.12), x1 and x2 are space variables and x3 is a time variable.

Example 1.5. In R2, the biharmonic operator

(1.13) P(D) = D1 + +

is a linear partial differential operator of order 4 which appears in the
study of elasticity.

One of the major conclusions of the theory of partial differential equa-
tions is that most of the important properties of solutions of a linear partial
differential equation depend only on the form of the highest order terms
appearing in the equation. These terms form what is known as the
principal part of the equation. The principal part of the general linear
partial differential operator (1.2)is

(1.14) Pm(X, D)
IaI=m

The principal part of the partial differential operator (1.4) is

P2(x, D) = + sin —

and the principal part of (1.5) is

(1.15) P1(x, D) = a1(x)D1 + a2(x)D2.

The principal parts of the Laplacian and wave operators are equal to the
operators themselves while the principal part of the heat operator (1.8) is

(1.16) P2(D) =

A non-zero vector = E defines an (unsigned) direction
in Note that for any real number X 0, the vectors and define the
same direction. A direction defined by the non-zero vector E R'1 is
called characteristic at the point x E with respect to the partial
differential operator P(x, D) given by (1.2), if

(1.17) Pm(X, = 0

where Pm(X, D) given by (1.14) is the principal part of P(x, D). Equation
(1.17) is called the characteristic equation of P(x, D) and its left hand side
is obtained from (1.14) by replacing D = (D1 with =

Pm(X, =
IaI=m

As an example, the characteristic equation of the operator (1.4) is
1sin —

Thus the direction = (0, 1) is characteristic at the point (x1, x2) =
(2, ir/2) with respect to this operator. The characteristic equation of the
wave operator (1.11) is

+ — = 0,
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and the direction = (1, 1, is characteristic at every point
(x1, x2, x3) of R3. Generally, if the coefficients of the principal part of an
operator are constant then obviously the characteristic directions are also
independent of the point x in W.

LetS be a smooth surface in and letx° be a point of S. The surface S
is said to be characteristic at x° with respect to P(x, D) if a vector normal
to S at x° defines a direction which is characteristic with respect to P(x, D)
at x°. If the surface S is characteristic with respect to P(x, D) at every one
of its points then S is called a characteristic surface. Naturally, in R2 a
characteristic "surface" is a curve called a characteristic curve.

The line x2 = ir/2 in R2 is characteristic at the point (x1, x2) = (2, ir/2)
with respect to the operator (1.4), because the normal vector (0, 1) to the
line defines a characteristic direction at the point (2, ir/2) with respect to
the operator (1.4) (see Fig. 1.1).

The plane

X1 + X2 + =

in R3 is a characteristic surface of the wave operator (1 .11), because the
normal (1, 1, to the plane is everywhere characteristic with respect to
(1.11) (see Fig. 1.2).

The partial differential operators that we study in this book and which
appear in applications, either do not have any characteristic surfaces or
else they have one-parameter families of surfaces each of which is charac-
teristic. Characteristic surfaces play a fundamental role in the study of

x2

—

___________________________

(2, ir/2)

0

Fig. 1.1
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x2

partial differential equations. In Section 3 we will illustrate the impor-
tance of characteristics by means of a very simple example. In Section 2
we will discuss methods for finding characteristic surfaces and will find
the characteristic surfaces of many important operators.

Problems

1.1. For each of the partial differential operators (1 .6)—(1.13),
(a) write down the principal part Pm(X, D),
(b) write down the characteristic equation (1.17).

1.2. Prove that if the vector = ..., satisfies the characteristic
equation (1.17) at some pointx E then, for any real number X, the
vector = also satisfies (1.17) at x.

2. Methods for Finding Characteristic Curves and Surfaces.
Examples

The first step in trying to find the characteristic curves or surfaces of a
linear partial differential operator is writing down its characteristic equa-
tion. If the coefficients of the principal part of the operator are constant
then the characteristic equation is a homogeneous polynomial in

with constant coefficients. It may be possible to recognize the charac-
teristic directions and determine the characteristic surfaces by simple
geometric reasoning. The following five examples in R2 illustrate this
method.

x3

xI

Fig. 1.2
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Example 2.1. In R2 let

P(x, D) = D1 + c(x).

Here the order m = 1 and the principal part is

P1(x, D) = D1.

The characteristic equation is

= 0

so that the direction (0, 1) is the only characteristic direction at every
point in R2. The characteristic curves are the lines x2 = const.

Example 2.2. In R2 consider the Laplace operator

P(D) = +

The characteristic equation is

+ = 0

which can be satisfied only by = (0, 0). Consequently there are no
characteristic directions and the Laplace operator has no characteristic
curves.

Example 2.3. In R2 consider the heat operator

P(D) = - D2.

The principal part is

P2(D) =

and the characteristic equation is

Just as in Example 2.1, the characteristic curves are the lines x2 = const.

Example 2.4. In R2 consider the wave operator

P(D) = —

The characteristic equation is
— = 0

which is satisfied jf = The characteristic curves are straight lines
making 450 angles with the axes; i.e., the lines x2 = x1 + c1 and x2 = —x1 +
c2 (see Fig. 2.1). Note that through each point (x?, pass exactly two
characteristic curves.

Example 2.5. The equation

uxx—4uu+aut+ bu= 0

where a, b, c are constants, is called the telegraph equation. Here we use
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(x, t) in place of (x1, x2). The principal part of the partial differential
operator (p.d.o.) involved in the equation is

The characteristic equation is

1

5x 5t —
C

which is satisfied by the vectors = (1, ±c). The characteristic
curves are the straight lines x + ci = c1 and x — Ct = c2. Through each
point of the (x, t)-plane pass exactly two characteristic curves.

If the coefficients of the characteristic equation are not constant it may
be necessary to use analytical methods for the determination of the
characteristics. For example, in R2, if the desired characteristic curves
are expressed parametrically, then the characteristic equation leads to an
ordinary differential equation which can be solved to yield the equations
of the characteristics. This method is illustrated in the following two
examples.

Example 2.6. In R2 let

P(x, D) = a1(x)D1 + a2(x)D2 + c(x).

x2

x2 = —x1 + C2

Fig. 2.1
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The order m is 1, the principal part is

P1(x, D) = a1(x)D1 + a2(x)D2

and the characteristic equation is

a characteristic curve given parametrically by

= f1(t), X2 = f2(t).

The tangent to this curve is given by (dx1/dt, dx2/dt) and therefore (dx2/dt,
— dx1/dt) is normal to C. Hence

dx2 dx1
a1(x1, x2) -a-- — a2(x1, x2) =

Thus, the characteristic curves can be obtained by solving the differential
equation

a1dx2 — a?,dxl = 0.

For example the characteristic curves of D1 + D2 are solutions of the
equation

dx2 — dx1 = 0

which are the lines x2 = x1 + c.
The characteristic curves of D1 + x1D2 are solutions of

dx2 — x1dx1 = 0

which are the parabolas x2 = + c (see Fig. 2.2).

Example 2.7. In R2 the operator

P(x, D) = +

is called the Tricomi operator and appears in hydrodynamics. The char-
acteristic equation is

+ = 0.

In the upper half plane, x2 > 0, there are no characteristic directions and
hence no characteristic curves. For x2 0, the characteristic directions at
each point (x1, x2) are given by the vectors (1, ± Just as in
Example 2.6 we conclude that the characteristic curves are solutions of
the equations

The solutions of these equations are

x1 — c = ± (—x2)312.

Thus, the characteristic curves are two one-parameter families of curves
illustrated in Figure 2.3
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x2

T +

xI

x1

Fig. 2.3

Fig. 2.2
x2

x1 — c =

xi — c = —x2)312



122 Introduction to Partial Differential Equations

We turn now to examples in higher dimensions.

Example 2.8. In consider the Laplace operator

The characteristic equation is

the only solution of which is . . ., = (0 0). Hence, there are no
characteristic directions and no characteristic surfaces.

Example 2.9. Consider the heat operator in

where we use t for the (n + 1)st variable. The principal part is

and the characteristic equation is

The only characteristic direction is . . ., = (0, . . ., 0, 1) and the
characteristic surfaces are the planes t = const.

Example 2.10. In consider the wave operator

where we use t for the (n + 1)st variable. The characteristic equation is

If we look for vectors of unit length satisfying this equation, i.e., if we
require that

then we must have = ± Since the components of a vector of unit
length are the cosines of the angles that the vector makes with the
corresponding coordinate axes, it follows that the characteristic direc-
tions make a 450 angle with the t-axis. Any n-dimensional surface with
normal at each of its points making a 450 angle with the t-axis is character-
istic. For example, the planes t + x1 = 0 and t — x1 = 0 are characteristic.
The double conical surfaces

(t — t°)2 — (x1 — x?)2 — . . . — — = 0

are characteristic surfaces which play a very important role in the study of
the wave operator. They are called characteristic cones. Figure 2.4 shows
a characteristic cone in three-dimensional space. Note that each point (X?,
x2°, t°) is the apex of a characteristic cone.

In general, finding characteristic surfaces in three or more dimensions
is a difficult matter. The analytical method described in Problem 2.5 leads
to a first order partial differential equation which is nonlinear when m � 2.
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Problems

2.1. Find the characteristic curves of each of the following operators in
R2:

(a)P(x, D) = +

(b)P(x, D) = +

(c) P(D) = + + (biharmonic operator)

(d)P(x, D) = — 2x1x2D1D2 + + x2D1 + x1D2.

2.2. Find the characteristic curves of each of the equations:

(a) + = 0

(b) + 2xyu,, + exu = cos (x + y)•

2.3. Find the slopes of the characteristic curves in Example 2.5. Also
draw the characteristic curves when (i) c = (ii) c = 1, and (iii) C =I

2.4. Describe the characteristic surfaces of the wave operator (with wave
propagation speed c) in R3

P(D)=

xl

Fig. 2.4
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2.5. Let Fbe a C' function of n variables with nonvanishing gradient and
suppose that the level surfaces of F are characteristic surfaces of the
general linear p.d.o. P(x, D) given by (1.2). Show that F must satisfy
the equation

(2.1) aa(x)[grad = 0.
IaI=m

Thus, in order to find characteristic surfaces of P(x, D) we must find
solutions of the first order p.d.e. (2.1). Note that (2.1) is nonlinear if
m 2. Also, verify that for the operator of Problem 2.4, equation
(2.1) is

+ !
= o.

\ax,1 \ax2I c2 \at/

3. The Importance of Characteristics. A Very Simple
Example

In this section we will illustrate the importance of characteristics by
discussing the simplest possible partial differential operator, the operator

= a/ax in the (x, y)-plane. As we saw in the previous section, (0, 1) is
the only characteristic direction and the characteristics are the lines y =
const.

We first show that the characteristics are exceptional for the Cauchy
(initial value) problem. The Cauchy problem for a first order partial
differential equation in two independent variables asks for a solution u of
the equation in a domain containing a curve C on which the values of u
have been assigned. The curve C is called the initial curve (or initial
manifold) of the problem and the assigned values of u on C are called the
initial data. Suppose first that the initial curve C is nowhere characteristic
with respect to D,. Then the vector normal to C at every one of its points
must have a non-zero component in the x direction and hence C must be
given by an equation of the form (see Fig. 3.1)

(3.1) x =

Consider now the initial value problem

(3.2) D,u = 0,

(3.3) u(4(y), y) = fly),
where f(y) is a given function. The differential equation (3.2) implies that
along the lines y = const., u(x, y) is constant, independent of x. Hence
u(x, y) = u(4(y), y) and from the initial condition (3.3) we see that

u(x,y) =f(y)
is the unique solution to the problem (3.2), (3.3). Suppose now that the
initial curve C is a characteristic curve, say the line y = 0, and consider
the Cauchy problem

(3.2) D,u = 0,
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where, again, f is a given function. If the function f is not identically
constant then there cannot be any solution to the problem (3.2), (3.4)
since the differential equation (3.2) contradicts the initial condition (3.4)
on the initial line y = 0. On the other hand iff(x) = c for all x, then for any
function g(y) satisfying the condition g(O) = c, the function

u(x,y) =g(y)
is a solution of the problem (3.2), (3.4). Thus, when the initial curve C is
characteristic, either there is no solution to the Cauchy problem or there
are infinitely many solutions; i.e., either there is no existence of solution
or there is no uniqueness.

Another important feature of characteristics is that along a characteris-
tic, a solution of the partial differential equation or its derivatives may
admit discontinuities. We can illustrate this with the operator D1. 1ff is a
function of a single variable, then u(x, y) = f(y) is a solution of the
differential equation D1u = 0. 1ff has a jump discontinuity at a point
then the solution u(x, y) has a jump discontinuity along the line y = Yo
which is a characteristic line. If f'(y) has a jump discontinuity at Yo then
au/ay has a jump discontinuity along the characteristic Y = Yo•

Next, characteristics play a crucial role in solving first order partial
differential equations. For example a solution to the equation

(3.5)

y

C

y) . (x,y)

Fig. 3.1

u(x, 0) = f(x),
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is given by

u(x,y)
= J

where the integral is a line integral along a characteristic curve y = const.
Note that along a characteristic curve y = const., the partial differential
equation (3.5) is actually an ordinary differential equation. This fact is
generally true for all linear first order p.d.e.'s and can be used to solve
the initial value problem for these equations by solving initial value
problems for o.d.e.'s.

Finally, we mention that characteristics can be used to introduce new
coordinates in terms of which the differential equation has a particularly
simple form, which is called the canonical form of the equation. This is
done in detail for linear first order equations in Section 6 and second order
equations in Section 7.

Problem

3.1. Consider the initial value problem for the equation D1u = 0 with
initial curve the parabolay = x2. Note that this curve is characteristic
at (0, 0) but not characteristic at any other point. Show that unless
the initial data satisfy a certain condition, the initial value problem
has no global solution. However, if P is any point of the initial curve
different from (0, 0), show that the initial value problem always has a
solution in a (sufficiently small) neighborhood of P. Is this true for P
= (0, 0)?

4. The Initial Value Problem for Linear First Order Equations
in Two Independent Variables

In this section we consider the initial value problem (or Cauchy prob-
lem) for a general linear first order equation in two independent variables.
Since a linear equation is a special case of a quasi-linear equation, all
results concerning the existence and uniqueness of solution can be ob-
tained as special cases of the corresponding results already proved in
Chapter III. We reach the same conclusions as those obtained for the
example discussed in the previous section. In brief, if the initial curve is
not characteristic, there exists a unique solution. If the initial curve is
characteristic, usually there is no solution and in the special case in which
there is a solution there are actually infinitely many solutions. In Example
4.1 we recall from Chapter III the method of solution which is based on
integrating the associated system of ordinary differential equations.

Initial Value Problem
Let the initial curve C be given parametrically by the equations

x = x0(t), y = y0(t); t E I

where x0(t), y0(t) are in C'(I), and let the initial data be given by the
function 4(t) which is also in C'(I). Find a function u(x, y) defined in a
domain fl of R2 containing C, such that
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(i) u = u(x, y) satisfies in fl the p.d.e.

(4.2) a(x, Y)UX + b(x, y)Uy + c(x, y)u = f(x, y),

(ii) on the curve C, u is equal to the given function 4), i.e.

(4.3) u(x0(t), y0(t)) = 4)(t)

for every t E I.
Concerning the p.d.e. (4.2) we assume throughout this section that the

coefficients a, b, c and the right hand side fare of class C' in fl and that
the coefficients a and b of the principal part of (4.2) do not vanish
simultaneously at any point of i.e., a2 + b2 0.

The following existence and uniqueness result follows directly from
Theorem 3.1 of Chapter III.

Theorem 4.1. Let (x0, Yo) be a point of the initial curve C and suppose
that C is not characteristic at (x0, Yo) with respect to the p.d.e. (4.2). Then
in a neighborhood U of (x0, Yo) there exists a unique solution of (4.2)
satisfying the initial condition (4.3) at every point of C contained in U.

If t0 is the value of the initial curve parameter t corresponding to the
point (x0, yo), then the vector = (dy0(t0)/dt, — dx0(t0)/dt) is normal to Cat
(x0, Yo) (see Fig. 4. 1), and the condition that C is not characteristic at (x0,
Yo) means that does not satisfy the characteristic equation of(4.2) at (x0,
yo)' i.e.

dy0(t0) dx0(t0)
(4.4) a(x0, Yo)

dt
— b(x0, Yo) dt

This is precisely condition (3.9) of Theorem 3.1 of Chapter III specialized
to the present linear case.

Briefly, Theorem 4.1 asserts the existence and uniqueness of solution
of the initial value problem (4.2), (4.3) in a neighborhood of any point of
the initial curve C at which C is not characteristic with respect to the
equation.

The difference between the linear and quasi-linear case should be
carefully noted. In the quasi-linear case, the basic condition (3.9) of
Theorem 3.1 of Chapter III involves not only the differential equation and
the initial curve but it involves also the initial data. In the linear case, the
basic condition (4.4) involves the equation and the initial curve only and
does not involve the initial data.

The word "characteristic" may be used (and it is often used) in the
quasi-linear and nonlinear case as well as in the linear case. Thus the basic
condition (3.9) in Theorem 3.1 of Chapter III may be expressed by saying
that the initial curve C is not characteristic at (x0, Yo) with respect to the
differential equation and the given initial data. However in this book we
have chosen to use the word characteristic only in the linear case.

The following special initial value problem arises frequently in applica-
tions:

(4.5) a(x, Y)UX + + c(x, y)u = f(x, y)

(4.6) u(x, 0) =
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Note that the initial curve of this problem is the x-axis. Since the vector
(0, 1) is normal to the x-axis and since

a(x, O)0 + Fl * 0,

the x-axis is nowhere characteristic with respect to the equation (4.5).
Therefore, Theorem 4.1 yields the following corollary.

Corollary 4.1. Let (x0, 0) be any point of the x-axis and suppose that a,
c and fare of class C' in an open set containing (x0, 0) while 4) is of class C1
in an open interval containing x0. Then in a neighborhood of (x0, 0) there is
a unique solution of the initial value problem (4.5), (4.6).

In the following example we review the method developed in Chapter
III for solving the initial value problem using the first integrals of the
associated system of ordinary differential equations.

Fig. 4.1
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Example 4.1. Solve the initial value problem

(4.7) + = x,

(4.8) u(x,O)=x2.

According to Corollary 4.1 there is a unique solution of this problem in
a neighborhood of every point of the x-axis. Here we will be able to find a
global solution valid in the whole (x, y)-plane. The system of o.d.e. 's
associated with the p.d.e. (4.7) is

(49)
y 1 x•

The first equality is an o.d.e., the general solution of which is

(4.10)

In the equality of the second and third ratios in (4.9) we eliminate x using
(4.10) to obtain the o.d.e.,

+ dy = du,

the general solution of which is

+ ç — =

Eliminating c1 using (4.10) we obtain

(4.11)

Therefore, two functionally independent first integrals of (4.9) are

y2 y3

u1 does not depend on u, the general integral of the p.d.e. (4.7) is
given by u2 = F(u1), or,

(4.12)

where F is an arbitrary C' function of a single variable. The initial
condition (4.8) determines F. In fact substituting y = 0 and u = x2 in (4.12)
we obtain

(4.13) F(x) = —x2.

Therefore

y3 I yZ\2
xy — — u = —

—
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and solving for u we find the solution of (4.7), (4.8),

(4.14)

We consider next the case in which the initial curve C, given by (4.1), is
characteristic with respect to the p.d.e. (4.2) at the point (x0, Yo) = (xo(to),
y0(t0)). Then the normal vector e0 = (dyo(t0)/dt, — dx0(t0)/dt) must satisfy
the characteristic equation of (4.2) at (x0, yo) i.e.,

dy0(t0) dx0(t0)
a(x0, Yo)

dt
— b(x0, Yo) dt

=

or

dx0(t0) dy0(t0)

- dt — dt
/

a(x0, Yo) b(x0, Yo)

The following nonexistence result is a special case of Theorem 4.1 of
Chapter III.

Theorem 4.2. Suppose that the initial curve C is characteristic with
respect to (4.2) at (x0, Yo) and that

d4,(t0)

dt
(4.16)

f(xo, Yo) — c(x0, y0)4(t0)

where /L is the common value of the ratios in (4.15). Then there is no
solution to the initial value problem (4.2), (4.3) in any neighborhood of the
point (x0, Yo).

In Problem 4.5 we outline a direct proof of Theorem 4.2 based on the
observation_that the principal part a first order p.d.o. is equal
to \1a2 + b2 times the directional derivative of u in the direction of the
vector field (a, b).

Finally, we consider the case in which the initial curve C is a character-
istic curve with respect to equation (4.2). Then, if the initial data satisfy a
certain condition, we have the following nonuniqueness result correspond-
ing to Theorem 4.2 of Chapter III.

Theorem 4.3. Suppose that the condition

dx0(t) dy0(t)

4
dt — dt —

(.17)
a(x0(t), y0(t)) - b(x0(t), y0(t)) -

dcb(t)

dt

f(xo(t), y0(t)) — c(x0(t), y0(t))çb(t)

is satisfied for all t E I (or, at least, for all tin a neighborhood of t0). Then
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in a neighborhood of (x0, Yo) = (x0(t0), y0(t0)) the initial value problem (4.2),
(4.3) has infinitely many solutions.

Problems

4.1. Verify by direct substitution that (4.14) is the solution of the initial
value problem (4.7), (4.8) in the whole (x, y)-plane.

4.2. For each of the following two initial value problems

(1) a(x, y)ux + u,, + c(x, y)u = f(x, y), u(x, Yo) = 4) (x),

(ii) + b(x, y)u,, + c(x, y)u =f(x, y), u(x0, y) =

formulate and prove existence and uniqueness results analogous to
that stated in Corollary 4.1.

4.3. For each of the following initial value problems verify that there is a
unique solution in a neighborhood of every point of the initial line.
Then solve the problem.

u(x,O)=x.
(b) u = 1, u(O, y) = y.

4.4. Show that the solution of the initial value problem

Ut + = 0, u(x, 0) = f(x),

where c is a positive constant, is given by

U(X, t) = f(x — Ct).

If the graph of f(x) is a "blip" with peak at x = 0 (see Fig. 1.3,
Chapter VIII), sketch the solution for various values of the time
variable t and interpret the solution as a wave traveling in the positive
x-direction with speed c.

4.5. (1) If V is the vector field V(x, y) = (a(x, y), b(x, y)) show that

+ = V IDvu.

where is the directional derivative of u in the direction of
the vector V.

(ii) The vector T(t) = (dx0(t)/dt, dy0(t)/dt) is tangent to the curve C
given by (4.1). Show that

d
y0(t)) = I T IDTu.

(iii) Show that if C is characteristic with respect to (4.2) at (x0, yo),
then V is tangent to C at (x0, Yo) and in fact

T0 =

where is the common value of the ratios in (4.15) and T0 =
T(ta), V0 = V(x0, Yo). Consequently, at (x0, Yo) we must have

u = DT U.

(iv) (i), the° p.d.e. (4.2) and the initial condition (4.3) to show
that at (x0, Yo)
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Dvu
=

y0) -

(v) Use (ii) and the initial condition (4.3) to show that at (x0, Yo)

1 d4(t0)
DT U = — —

Tol dt

(vi) Prove Theorem 4.2.

5. The General Cauchy Problem. The
Theorem and Holmgren's Uniqueness Theorem

In this section we present a brief discussion of the general Cauchy
problem and state the Cauchy-Kovalevsky theorem and Holmgren's
uniqueness theorem for linear partial differential equations. Our purpose
is not to give proofs but only to make the student aware of the content of
these theorems.

General Cauchy Problem
Consider the linear p.d.e. of order m,

(5.1) =f

where the coefficients aa and the right-hand-side fare functions of x = (x1,
in Let S be a given smooth surface in and let n = n(x)

denote the unit vector normal to S at x. Suppose that on S the values of u
and all of its directional derivatives in the direction n of order up to m — 1

are given, i.e.
am-lu

(5.2) U s = — = =
an anm—i

where . . . are given functions defined on S. Find a solution u
of equation (5.1) defined in a domain fl containing S and satisfying
conditions (5.2) on S.

The surface S is called the initial surface of the problem and the
conditions (5.2) are called the initial conditions. The given functions

4m-i which are defined on S are called the initial data.
The Cauchy-Kovalevsky theorem which we state below requires that

all functions appearing in the statement of the problem as well as the
initial surface S must be analytic. We have already defined analytic
functions in Chapter IV. The surface S in is said to be analytic if it is a
level surface of an analytic function; i.e., if it is described by an equation
of the form

F is an analytic function with nonvanishing gradient.

Theorem 5.1 (The Cauchy-Kovalevsky Theorem). Let x° be a point of
the initial surface S. Suppose that the coefficients aa, the right-hand sidef,
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the initial data 4o, ..., 4m—i, and the initial surface S are all analytic in
some neighborhood of x°. Suppose furthermore that the initial surface S is
not characteristic at x° with respect to equation (5.1), i.e.

(5.3) 0
IaI=m

Then the Cauchy problem (5. 1)-(5.2) has a solution u(x) which is defined
and analytic in a neighborhood of x°, and this solution is unique in the
class of analytic functions.

The theorem makes two assertions: (1) there exists an analytic solution
in some neighborhood of x°, and (ii) this solution is unique in the class of
analytic functions. In more precise language the existence assertion states
that there exists a function u which is defined and analytic in a neighbor-
hood U of x° and is such that at every point x E U, u satisfies the p.d.e.
(5.1) and at every point x of the part of S contained in U, u satisfies the
initial conditions (5.2). The uniqueness assertion states that two analytic
solutions of(2.7)-(2.8) must necessarily coincide in some neighborhood of
x°. This uniqueness assertion still allows for the possibility that there may
be more than one solution to the Cauchy problem if solutions which are
not necessarily analytic are allowed. For example there may be two or
more distinct solutions in the class of functions which are cm in a
neighborhood of x°. It was proved by Holmgren that this cannot happen
and that in fact any two Ctm solutions of the Cauchy problem must
necessarily coincide in a neighborhood of x°.

Theorem 5.2. (Holmgren's Uniqueness Theorem). Suppose that all as-
sumptions of the Cauchy-Kovalevsky theorem hold. Then any two solu-
tions of the Cauchy problem (5. 1)-(5.2) which are defined and are of class
cm in some neighborhood of x° must be equal in some neighborhood of x°.

6. Canonical Form of First Order Equations
Consider the general linear first order p.d.e. in two independent varia-

bles,

a(x, y)u + d(x, Y) = 0

where the coefficients a, b, c, d are defined in some domain fl of R2. We
assume that a and b are in 0 (fl) and do not vanish simultaneously at any
point of fl. We will show that in a neighborhood U of any point (x0, Yo) of
fl, we can introduce new coordinates and in terms of which the p.d.e.
(6.1) takes the simple form

(6.2) + + = 0.

Thus, in the new coordinates the partial differential equation (6.1) be-
comes an ordinary differential equation with as the independent variable
and as a parameter which may be treated as constant. Equation (6.2) is
called the canonical form of equation (6.1). We also say that in the
coordinates the equation is in canonical form. Frequently the canonical
form (6.2) can be easily integrated and, after returning to the original
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coordinates x and y, the general solution of the p.d.e. (6.1) can be
obtained. Example 6.1 illustrates this procedure.

Let the new coordinates be related to the old coordinates x, y by
the equations

(6.3) = y) = y).

Since we are only interested in smooth nonsingular transformations of
coordinates we must require that the functions y), 71(x, y) be C' and
that their Jacobian be different than zero, i.e.

(6.4) — o.
a(x, y)

If condition (6.4) is satisfied at the point (x0, Yo) of fl, then we know that in
a neighborhood of (x0, Yo) we also have the inverse relations

(6.5) x = y = ti).

Now from the chain rule, we have

(6.6) = + = +

and substituting (6.5) and (6.6) into equation (6.1) we obtain the equation

(6.7) + + Cu + d = 0

where

(6.8) A = + B = +

From (6.8) we see that B = 0 if is a solution of the first order partial
differential equation
(6.9) + = 0.

Equation (6.9) has infinitely many solutions. We can find one of them by
assigning initial data on a non-characteristic initial curve and solving the
resulting initial value problem according to the method described in
Chapter III or in Section 4 of this chapter. Supposing for example that
a(x0, Yo) 0, we may assign

(6.10) y) = y.

Since the initial curve x = x0 is not characteristic with respect to (6.9) at
(x0, Yo) (why?), there exists a unique solution of(6.9), (6.10) in a neighbor-
hood U of (x0, yo). [If b(x0, Yo) * 0 we simply reverse the roles of x and y.]

Let ii(x, y) be the solution of (6.9) and (6.10) in a neighborhood of (x0,
Yo). We are free to pick the function y) subject only to the condition
(6.4) that J 0. From (6.10) we have

Yo) = 1

and if we pick

y) = x

condition (6.4) is satisfied at (x0, ye). Hence (by continuity) it is also
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satisfied in a neighborhood of (x0, Yo). Let U be a neighborhood of (x0, Yo)
in which y) is defined and at the same time J 0. Then A 0 in U.
For if A = 0 at some point of U, then at that point (since B = 0 also)
equations (6.8) would form a system of homogeneous linear equations in a
and b with J being precisely the determinant of its coefficients. Since
J # 0, both a and b must vanish at that point, contradicting our original
assumption that a and b do not vanish simultaneously. Finally, since B = 0
and A # 0 in U we can divide equation (6.7) by A and obtain the desired
canonical form (6.2).

It should be emphasized that the functions y) and y) describing
the transformation of coordinates (6.3) which yields the canonical form
(6.2) can be chosen in many (in fact infinitely many) ways. However,
since y) must satisfy equation (6.9), the level curves y) = const.
are always characteristic curves of equation (6.1). Thus, one set of the
new coordinate curves are the characteristic curves of (6.1). The second
set of coordinate curves, y) = const., may be taken to be any one
parameter family of smooth curves which are nowhere tangent to the
characteristic curves (see Fig. 6.1). In the above discussion the second set
of coordinate curves was chosen to be the set of lines parallel to the y-
axis.

Fig. 6.1

y) = const.
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Example 6.1. Let us consider the equation

(6.11)

Here a = 1, b = x, c = 0, d = —y, and fl = R2. We may take (x0, Yo) = (0,
0). The function must satisfy

(6.12)

and we may take as initial condition

(6.13) y) = y.

The general solution of dx/1 = dyix is y — x2/2 = c, and, according to
Example 2.2 of Chapter III, the general solution of (6.12) is = fly —

x2/2). In order to satisfy (6.13) we must take fly) = y and thus we obtain
the solution of (6.12), (6.13),

(6.14)

in the whole of R2. If we take

(6.15)

we see that the Jacobian is

J = — = 1.

Hence (6.14), (6.15) give a nonsingular transformation of coordinates in
the whole of R2 and the inverse relations are

Now,

= + =

and in the new coordinates the p.d.e. (6.11) becomes

(6.16)

The general solution of (6.16) is

(6.17) u = + +

where is an arbitrary function of Returning to the variables x and y
we obtain the general solution of (6.11),

x3 / x2
(6.18)

Problems
6.1. Use the general solution (6.18) of (6.11) to find the solution of the
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initial value problems consisting of the p.d.e. (6.11) and each of the
following initial conditions

(a) u(O, y) = y2

(b) u(O, y) = sin y

(c) u(1, y) = 2y.

6.2. For each of the following equations, first make a transformation of
coordinates to obtain the canonical form. Then obtain the general
solution of the equation by solving its canonical form.

(a) u

(b)

u = 0

(d) U = 1.

7. Classification and Canonical Forms of Second Order
Equations in Two Independent Variables

The general linear second order partial differential equation in two
independent variables is an equation of the form

+ + + + + Iii + g = 0

where a, b, c, d, e, land g are functions of the variables x and y. In this
section we assume that a, b and c are of class C2 and do not vanish
simultaneously. We will study equation (7.1) in domains fl of R2 in which
the discriminant

(7.2)

is either everywhere positive, everywhere negative, or everywhere zero
in fl. We will show that for every point (x°, y°) E fl we can find a
neighborhood U C fl of (x°, y°) and new coordinates and so that in U
and in terms of the new coordinates the form of equation (7.1) is such that
its principal part is particularly simple. We then say that the equation is in
canonical form in U. It may be possible to find new coordinates for the
whole domain fl such that in terms of the new coordinates the equation is
in canonical form in the whole of fl. However this requires additional
assumptions on a, b and c which will not be discussed here.

Let the new coordinates be related to the old coordinates x, y by
the equations

(7.3) = y) = y).

Since we are only interested in smooth non-singular transformations of
coordinates we require that the functions y), y) are C2 and the
Jacobian is not zero,

(7.4)
—

0.
a(x, y)
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In a neighborhood of any point (x0, Yo) of fl where condition (7.4) is
satisfied we also have the inverse relations

(7.5) x = ii), y = ti).

Now, using the chain rule, we have

(7.6) = + = +

and

= + + +

(7.7) = + + + +

= + + U,rn112y +

In (7.7) we have written out only the terms involving second order
derivatives of u. Here and throughout this section, dots stand for terms
involving derivatives of u or order less than two. Substituting (7.5), (7.6)
and (7.7) into equation (7.1) we obtain the form of the equation in the new

coordinates,

(7.8)

A = + +

(7.9) B = + + +

C = + +

We first note that using equations (7.9) we can prove the important
relation,

(7.10) B2 — AC = (b2 —
—

or

(7.11) =

where is the discriminant of the p.d.e. in the new coordinates,

(7.12)

In view of(7.4), equation (7.11) shows that if we make a smooth nonsingu-
lar transformation of coordinates, the sign of the discriminant of equation
(7.1) does not change. We restate this result in the following theorem.

Theorem 7.1. The sign of the discriminant of a second order p.d.e. in
two independent variables is invariant under smooth nonsingular transfor-
mations of coordinates.

Theorem 7.1 shows that the fact that the discriminant is positive, zero,
or negative is an intrinsic property of the equation which does not depend
on the particular coordinate system used. This suggests that second order
equations may be classified according to the sign of their discriminant.

Definition 7.1. Let be the discriminant of a second order equation in
two independent variables.
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(a) If > 0 at the point (x0, Yo), the equation is said to be hyperbolic at
(x0, Yo).

(b) If = 0 at the point (x0, Yo), the equation is said to be parabolic at
(x0, Yo).

(c) If <0 at the point (x0, yo), the equation is said to be elliptic at (x0,
Yo).

The equation is said to be hyperbolic, parabolic or elliptic in a domain fl
of R2 if it is, respectively, hyperbolic, parabolic, or elliptic at every point
of fl.

Example 7.1. The wave equation

uxx — uin, =

is hyperbolic in R2. The heat equation

uxx — U1, = 0

is parabolic in R2. Laplace's equation

Uxx + U1,1, = 0

is elliptic in R2. The Tricomi equation

+ = 0

is elliptic in the upper-half plane y > 0, parabolic on the line y = 0 and
hyperbolic in the half-plane y <0.

We will consider now each type of second order equation separately.

Theorem 7.2. Suppose that equation (7.1) is hyperbolic in a domain fl.
Then, in some neighborhood Uofany point (x0, Yo) of fl, we can introduce
new coordinates and in terms of which the equation has the canonical
form

(7.13)

in U.
An alternative canonical form for hyperbolic equations can be obtained

from (7.13) by performing a rotation of coordinates (see Problem 7.1).
This form is

(7.14)

Thus, in a neighborhood of any point, by introducing new coordinates,
every hyperbolic equation in two independent variables can be brought to
a canonical form having as principal part the same as that of the wave
equation.

Proof of Theorem 7.2. In order to obtain the desired canonical form
(7.13), we must choose the functions y) and y) so that the
coefficients A and C in equation (7.8) vanish identically. Let (x0, y0) be
any point of fl. We may assume that not both a and c vanish at (x0, y0).
Otherwise, we first introduce the new coordinates

x,=x+y, y'=x—y,
and verify that in the (x', y') coordinates, a and c are not both zero at (x0,
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Yo) (Problem 7.2). We may also assume that a(x0, Yo) 0. Otherwise, the
roles of x and y should be interchanged in what follows. By continuity,
a(x, y) * 0 in a neighborhood U of (x0, Yo). Since > 0, the equation

(7.15) aX2 + 2bX + c = 0

has two real and distinct roots X1(x, y) and X2(x, y) for all (x, y) in U. Now,
let y) and ii(x, y) be solutions of the first order p.d.e.'s

(7.16) =

(7.17) =

in U. Then, by substitution into the first and last of equations (7.9), it is
easy to check that A = C = 0 in U. Hence, = B2 in U. Suppose now
that y) and y), in addition to being solutions of (7.16) and (7.17),
satisfy also condition (7.4) in U. Then, by (7.11), > 0 in U. Hence, B #
o in U, and dividing (7.8) by 2B we obtain the desired canonical form
(7.13) in U.

In order to complete the proof of Theorem 7.2 it remains to show that in
some neighborhood of (x0, yo), we can find solutions of (7.16) and (7.17)
satisfying condition (7.4). Substituting (7.16) and (7.17) into (7.4) we
obtain

— = (A1 —

Since A1 A2, it is only necessary to find solutions of (7.16) and (7.17)
such that 0 and 0. Such solutions can be found by introducing
appropriate initial conditions and solving the resulting initial value prob-
lems for and by the methods described in Chapter III or in Section 4 of
this Chapter (see Problem 7.3).

It should be emphasized that the functions y) and ii(x, y) describing
the transformation of coordinates (7.3) can be chosen in many different
ways. However, since these functions must satisfy equations (7.16) and
(7.17), it is easy to verify (see Problem 7.4) that their level curves are
characteristic curves of equation (7.1). We conclude that every hyper-
bolic equation has two distinct one-parameter families of characteristics
and using these as new coordinate curves the equation takes the canonical
form (7.13).

Example 7.2. Consider the wave equation

(7.18) — = 0

which is hyperbolic in R2. In this equation a = 1, b = 0, c = —1 and
equation (7.15) is

A2 — I = 0

which has the roots A1 = 1 and A2 = —1. The functions y) and ii(x, y)
must satisfy the equations

= =

The functions
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are solutions of these equations in R2 and the Jacobian is

— = —2 0.

In the coordinates the wave equation has the canonical form

(7.19) = 0.

From (7.19) we get (how?)

(7.20)

where fis an arbitrary function of one variable. From (7.20) we get (how?)

(7.21) u =

F G are arbitrary functions of one variable. Equation (7.21)
gives the general solution of (7.19). Returning to the (x, y)-variables, we
obtain the general solution of the wave equation (7.18),
(7.22) u = F(x + y) + G(x — y).

Theorem 7.3. Suppose that equation (7.1) is parabolic in a domain 11.
Then in some neighborhood U of any point (x0, Yo) of 11 we can introduce
new coordinates and in terms of which the equation has the canonical
form

(7.23)

in U.
According to Theorem 7.3, in a neighborhood of any point, by introduc-

ing new coordinates, every parabolic equation in two independent varia-
bles can be brought to a canonical form having as principal part the same
as that of the heat equation.

Proof of Theorem 7.3. Let (x0, Yo) be any point of fl. Since = 0, we
may assume that not both a and c vanish at (x0, Yo). Otherwise, b would
also vanish at (x0, Yo) contradicting our assumption that a, b and c do not
vanish simultaneously. We may also assume that a(x0, Yo) # 0. If c(x0, Yo)

0 instead, the remainder of the proof should be modified in an obvious
way. By continuity, we have a(x, y) 0 in a neighborhood U of (x0, Yo)
and since = 0, equation (7.15) has the single root (—b/a). Let y) be a
solution of the equation

(7.24)
= (—

in U. By substitution into the last of equations (7.9), it is easy to check
that C = 0 in U. As was pointed out in the proof of Theorem 7.2 it is
possible to find a solution y) of (7.24) such that 0 in U. For
y) we may use any function which is independent of y) in U, for
example, we may take y) = x. Then

J — = / 0, in U.

Now, from (7.11) it follows that = 0 in U. Since we already know
that C = 0 in U, we have = B2 and hence B = 0 in U. Finally, from the
first of equations (7.9) we have A = a (since = x) in U. Hence A 0 and
dividing (7.8) by A we obtain the desired canonical form (7.23) in U.
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The functions y) and y) can be chosen in many different ways,
but since ii(x, y) must satisfy equation (7.24), its level curves are character-
istics of equation (7.1). Every parabolic equation has only one one-
parameter family of characteristics. Using these characteristics as one set
of new coordinate curves and any other one-parameter family of nonchar-
acteristic curves as the second set of new coordinate curves, the equation
takes the canonical form (7.23).

Theorem 7.4. Suppose that equation (7.1) is elliptic in a domain fl.
Then in some neighborhood U of any point (x0, Yo) of fl we can introduce
new coordinates and in terms of which the equation has the canonical
form

(7.25)

in U.
According to Theorem 7.4, in a neighborhood of any point, by introduc-

ing new coordinates, every elliptic equation in two independent variables
can be brought to a canonical form having as principal part the same as
that of Laplace's equation.

The proof of Theorem 7.4 will not be given here since it is considerably
more difficult than the proofs of the previous theorems. The interested
student is referred to the book of Garabedian.1 If the coefficients a, b and
c are assumed to be analytic, the proof is simpler and involves analytic
continuation into the domain of complex values of the variables x andy.

Elliptic equations have no characteristic curves.

Problems
7.1. Show that the alternative canonical form (7.14) of a hyperbolic

equation can be obtained from the canonical form (7.13) by a 45°
rotation of coordinates.

7.2. Suppose that both coefficients a and c of equation (7.1) vanish at the
point (x0, y0). Show that in terms of the new coordinates x' = x + y,

= x — y the coefficients of and of the equation do not
vanish at that point.

7.3. Show that in a neighborhood of (x0, Yo) there exist solutions y)
and y) of equations (7.16) and (7.17) satisfying the conditions

0 and 0.
7.4. Show that if A1 and A2 are roots of equation (7.15) and if y) and

ii(x, y) are solutions of (7.16) and (7.17), the level curves y) =
const. and y) = const. are characteristic curves of equation
(7.1).

7.5. Consider the second order equation
uxx + cuyy = 0

where c is constant. Find the type of the equation and sketch its
characteristic curves for c = —4, —1, —1/100, 0, 1.

7.6. Prove the assertions made in this section concerning the existence or
nonexistence of characteristic curves for second order hyperbolic,
parabolic and elliptic equations in two independent variables. Specifi-
cally, prove that



Linear Partial Differential Equations 143

(a) A hyperbolic equation has two one-parameter families of charac-
teristics

(b) A parabolic equation has one one-parameter family of character-
istics

(c) An elliptic equation has no characteristics.
7.7. For each of the following equations describe the regions in the (x, y)-

plane where the equation is hyperbolic, parabolic or elliptic.
(a) + + — u = 0
(b) + + + sin (xy)u = 5

(c) — + + — u = 0.

8. Second Order Equations in Two or More Independent
Variables

A second order linear p.d.e. in n independent variables is an equation of
the form

(8.1) an— + + cu = d
j=i

where the coefficients au, and c and the right hand side d are functions
of the independent variables x1,..., Just as in the case of two
independent variables, equation (8.1) can be classified according to a cer-
tain property of the "coefficient matrix" [au] of its principal part. Since

= we may assume without loss of generality that [au]
is symmetric; i.e., that au = i, j = 1 n. The property which may
be used to classify equation (8.1) must be such that it remains invariant
under smooth nonsingular transformations of coordinates.

For equation (7.1) in two independent variables the property used for
its classification was the sign of the discriminant = — ac. We showed
in Section 7 that the sign of is invariant under smooth nonsingular
transformations of coordinates. The coefficient matrix of the principal part
of equation (7.1) is

(8.2)

The eigenvalues of this matrix are the roots of the equation

a—A b
—o

b C—A

or

(8.3) A2—(a+c)A—(b2—ac)=O.

Let A1, A2 be the roots of(8.3). It is easy to check that A1 and A2 are real (in
fact the eigenvalues of a symmetric matrix are always real) and that

A1A2 = —(b2 — ac)
or

(8.4) A1A2 =
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(Do not confuse these A1 and A2 which are the eigenvalues of the matrix
(8.2) with the roots of equation (7.15) of the previous section.) From
equation (8.3) we conclude that:

(a) > 0 A1 and A2 are non-zero and have opposite signs.
(b) = 0 at least one of A1, A2 is zero.
(c) <0 A1 and A2 are nonzero and have the same sign.
We can therefore classify second order equations in two independent

variables according to the signs of the eigenvalues of the coefficient
matrix of their principal part. In fact this is the classification scheme that
we use for second order equations in two or more independent variables.

The eigenvalues of the coefficient matrix [au] are defined to be the roots
of the equation

(8.5) a11 — A a12

a21 22A 2n = o.

afl2

It is known from linear algebra that since [a0] is symmetric, its eigenval-
ues are all real. Moreover, using another theorem of linear algebra, it can
be shown that, at a particular point x°, the number of positive, zero and
negative eigenvalues of the coefficient matrix of the principal part of
equation (8.1) remains invariant under smooth non-singular transforma-
tions of coordinates. This shows that the following classification scheme
for second order equations is independent of the particular coordinate
system used.

Definition 8.1. Let A1,..., be the eigenvalues of the coefficient
matrix [a0] of the principal part of equation (8.1).

(a) If A1,..., are nonzero and have the same sign at the point x° the
equation is said to be elliptic at x°.

(b) If A1 are nonzero and all except one have the same sign at
x°, the equation is said to be hyperbolic at x°.

(c) If A1,..., are nonzero and at least two of them are positive and
two negative at x°, the equation is said to be ultrahyperbolic at x°.

(d) If any one of A1,..., is zero at x°, the equation is called para bolic
at x°.

Equation (8.1) is said to be elliptic, hyperbolic, etc., in a domain fi of R'1
if it is respectively elliptic, hyperbolic, etc., at every point of fi.

Example 8.1. Laplace's equation

+ ••• + = 0,

is elliptic in R'1. The wave equation

+ + — = 0,

where stands for the time variable t, is hyperbolic in The equation

ux1x1 + ux2x2 — ux3x3 — ux4x4 =

is ultrahyperbolic in R4. The heat equation
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+ + — = 0,

where stands for the time variable t, is parabolic in

We have seen in the previous section that by making a transformation
of coordinates, every second order equation in two independent variables
can be reduced to its canonical form in a whole neighborhood of any
point. In general, this cannot be done for equations with variable coeffi-
cients in more than two independent variables. However, using a theorem
from linear algebra it can be shown that it is always possible to make a
linear transformation of coordinates and reduce equation (8.1) to a canoni-
cal form at any given single point. This canonical form is such that the
coefficient matrix of its principal part is diagonal at that point. Explicitly,
it can be shown that for any given point P in there is a linear
transformation

(8.6) = = 1,...,

such that in terms of the new coordinates , equation (8.1) has the
form

2OU CU
(8.7)

i,j=1 i=1

where at P the values of the coefficients are

(8.8) AQ(P) = 0 if i *f
= +1, —1 or 0, i= 1,...,n.

Moreover the numbers A11,..., differ from the eigenvalues of the
coefficient matrix only by positive factors.

It should be emphasized that if the coefficients au of equation (8.1) are
variable, the coefficients of(8.7) are also variable and have the values
given by (8.8) only at the given point P and not necessarily at any point
other than P. If however the coefficients aQ are constant, the are also
constant and we have a canonical form which is valid everywhere.

Theorem 8.1. Suppose that the coefficients of equation (8.1) are
constant in some domain fl of Then there is a linear transformation of
coordinates of the form (8.6) with nonsingular matrix such that in
terms of the new coordinates equation (8.1) has the canonical
form

(8.9)
i=1 i=1

in fl, where A11 are equal to one of the values +1, —1, or 0 in fl.
In particular if(8. 1) is elliptic in fl it can be reduced to the canonical form

(8.10) + + CU = D,
1=1 i=1
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in fl. If(8. 1) is hyperbolic in fl, it can be reduced to the canonical form

i=1 i=1

in fi.
We discuss now the forms of the most common second order elliptic,

hyperbolic and parabolic equations that originate from physical problems.
In order to do this we need the following definition.

Definition 8.2. Let [an], i, j = 1 n be a symmetric matrix. The
following second order homogeneous polynomial in the variables X1,
xn,

(8.12) Q(X) =
i,j=1

is called the quadratic form associated with the symmetric matrix [aQ]. As
usual X = (X1,..., is considered as a point in The quadratic form
(8.12) is said to be positive definite if

(8.13) >0, for every X # 0 in
i,j=1

A well known theorem of linear algebra asserts that the eigenvalues of a
symmetric matrix [au] are all positive if and only if the quadratic form
associated with is positive definite. In view of this theorem the
following definition of ellipticity in a domain fl is equivalent to the
definition given previously. Assuming that the sign in front of equation
(8.1) is chosen so that a11 > 0 in a domain fl, equation (8.1) is said to be
elliptic in fl if the quadratic form

(8.14) Q(x, X) =
i,j=1

is positive definite for every x in fl.
Second order elliptic equations usually appear in the study of physical

problems related to steady state phenomena. For example, if u(x) is the
steady state temperature at the point x of a nonhomogeneous, isotropic
body, then at every point interior to the body, u must satisfy the second
order elliptic equation

(8.15) = 0.
i=i

The function k(x) is always positive and is called the coefficient of thermal
conductivity of the body at the pointx. If the body is homogeneous, k(x) is
constant and equation (8.15) becomes Laplace's equation.

Wave propagation phenomena such as the propagation of sound or of
electromagnetic waves are frequently described by second order hyper-
bolic equations of the general form
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t92U t92U
(8.16) —i.—

i,j=1 3Xi3Xj

where the dots stand for terms of order less than two and the quadratic
form associated with the matrix [aül is positive definite. In equation (8.16)
there are n + 1 independent variables, n "space" variables x1, . . . , and
one "time" variable t. It is left as an exercise to show that equation (8.16)
is hyperbolic according to Definition 8.1 (see Problem 8.3).

Phenomena such as the flow of heat or the diffusion of a fluid through a
porous medium are usually described by second order parabolic equa-
tions of the general form

(8.17)
i,j=1 at i=1

where the quadratic form associated with the matrix [an] is positive
definite. In equation (8.17) there are n + 1 independent variables. Note
carefully the special role of the time variable t. The principal part of the
equation does not involve derivatives with respect to t and the coefficient
of the first order derivative au/at is —1. Equation (8.17) is obviously
parabolic according to Definition 8.1, and because of its special character
it is sometimes called parabolic in the narrow sense.

We close this section with a few remarks concerning characteristic
surfaces of second order equations. We note first that if equation (8.1) is
elliptic it has no characteristic surfaces. In fact, a nonzero vector =

a,,) E R'1 defines a direction which is characteristic with respect to
(8.1) if

(8.18) = 0.
i,j=1

Using the definition of ellipticity in terms of the positive definiteness of
the quadratic form associated with [aQ] we see that (8.18) cannot be
satisfied by a nonzero vector Hence a second order elliptic equation
has no characteristic directions and hence no characteristic surfaces. This
property of nonexistence of characteristics is used to define elliptic linear
partial differential equations of any order (see Problem 8.4).

Consider next a parabolic equation of the form (8.17). A nonzero vector
= (h,..., in defines a direction which is characteristic with

respect to (8.17) if (8.18) is satisfied. Again, the positive definiteness of
the quadratic form in (8.18) implies that = ... = = 0 and, hence,

= (0,.. . , 0, 1) is the only characteristic direction of (8. 17).
Hence, the hyperplanes t = const are the only characteristic surfaces of
(8.17).

The characteristics of hyperbolic equations of the form (8.16) are more
complicated. A non-zero vector = in defines a
direction which is characteristic with respect to (8.16) if

— = 0.
i,j=1
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There are infinitely many directions which satisfy this equation and the
structure of the characteristic surfaces is even more complicated by the
fact that the coefficients aQ may be functions of x. Since the wave
equation is a special case of (8.16), the student should recall the discus-
sion of its characteristics in 10 of Section 2. Each point in is
the apex of a characteristic cone of the wave equation. This is a double
cone with axis parallel to the t-axis and generators making a 450 angIe with
the t-axis. It divides the space into three domains (except when n =
1). For the more general equation (8.16), each point in is the apex of a
characteristic "conoid." When the coefficients aQ are variable, thc charac-
teristic conoid is not generated by straight lines, but it still divides
into three domains (except when n = 1).

Problems

8.1. Show that by changing the independent and dependent variables,
every second order homogeneous elliptic equation with constant
coefficients can be reduced to the canonical form

+ Xv = 0
j=i

where A is a suitable constant. [Hint: In equation (8.10) with D = 0,
set

8.2. Show that by changing the independent and dependent variables,
every second order homogeneous hyperbolic equation with constant
coefficients can be reduced to the canonical form

fli 2 2

— + Xv = 0

where A is a suitable constant. [See Problem 8.1.1
8.3. Show that equation (8.16), with [aul positive definite, is hyperbolic.
8.4. Let Pm(X, D) be the principal part of the linear partial differential

operator of order m in n independent variables,

P(x, D) =

P(x, D) is said to be elliptic at the point x° E if

Note that this definition means that P(x, D) is elliptic at x° if and only
if P(x, D) has no characteristic directions at x°, and hence no charac-
teristic surfaces passing through x°. It can be shown that an elliptic
operator must necessarily be of even order.
(a) Show that for m = 2 the above definition of ellipticity is equiva-

lent to the one given in Definition 8.1.
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(b) Show that the biharmonic operator

D14 + 2D12D22 + D24

is elliptic in R2. This operator appears in the theory of elasticity.

9. The Principle of Superposition
LetP = P(x, D) be a linear partial differential operator of order m in

(9.1) P(x, D) =

Using the familiar fact that for any multi-index a = (a1, ..., and any
constants c1 and c2,

(9.2) Dcx(ciui + c2u2) = + c2Dcxu2,

it is easy to verify that

(9.3) + c2u2) = c1 + c2

or, more briefly,

(9.4) P(c1u1 + c2u2) = c1Pu1 + c2Pu2.

In the relations (9.2)—(9.4) the functions u1 and u2 are any two functions
which are sufficiently differentiable. (In any particular discussion, a
function is said to be sufficiently differentiable if all the derivatives of the
function appearing in that discussion exist.)

In the language of linear algebra, the relation (9.4) may be expressed by
saying that P acts on functions u as a linear transformation. More pre-
cisely, if we consider only functions u in Cmffl), where fi is a domain in
R'1, then P is a linear transformation from the vector space to the
vector space C°(fl).

As a consequence of the linearity property (9.4) of P, the solutions of
the homogeneous equation

(9.5) Pu = 0

have the following superposition property: If u1 and u2 are any two
solutions of the homogeneous equation (9.5) and c1 and c2 are arbitrary
constants, then a linear combination c1u1 + c2u2 is also a solution of (9.5).
In algebraic language this superposition property may be expressed by
saying that the solutions of (9.5) form a vector space (which is usually
called the null space, or kernel, of P).

The superposition property obviously holds for any finite number of
solutions of the homogeneous equation (9.5). If u1, ..., uk are solutions of
(9.5) and c1, ..., Ck are arbitrary constants, then

(9.6) c1u1 + + ckuk

is also a solution. The linear combination (9.6) is called a superposition of
the solutions u1,..., uk. Since the constants c1,..., Ck may be chosen
arbitrarily, by forming superpositions of a known collection of solutions
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of equation (9.5) we obtain a large collection of new solutions.
As an example, consider Laplace's equation in R2,

+ = 0

or

uxx + U1,1, = 0.

It is easy to verify that the functions

u1(x, y) = 1, u2(x, y) = x, u3(x, y) = y

are solutions of the equation. By superposition, all polynomials

Cl + C2X + C3)',

of degree 1 are also solutions of the equation.
It is natural to try to form superpositions of an infinite number of

solutions of(9.5). Let u1, u2,. .. be solutions of equation (9.5) and suppose
that the series

converges. Then the function

(9.7) u =

is also a solution of equation (9.5) provided that

(9.8) CkUk) =

i.e., provided that P may be applied to the series term by term.
We may also form superpositions of a one-parameter family of solutions

of (9.5). Suppose that for each value of a parameter A in some interval I
of R', the function u(x, X) is a solution of (9.5), i.e.

Pu(x, X) = 0, for every X E I.

Suppose furthermore that for a real-valued function g defined on I, the
integral

(9.9) fg(X)u(x, X)dX

is convergent. Then the function

(9.10) u(x) = Jg(X)u(x, X)dX

is also a solution of (9.5) provided that

p [jg(x)u(x, X)dX] = jg(X)Pu(x, X)dX,
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i.e., provided that the order of application of P and of integration with
respect to the parameter A may be interchanged. We may also form
superpositions of solutions of (9.5) depending on several parameters.

Finally, let u(x, X), X E I be a one-parameter family of solutions of(9.5)
and consider the superpositions

v(x, A, h) = [u(x, A + h) — u(x, h)], h 0

which are solutions of (9.5) depending also on the parameter h. Suppose
that the limit

0u
lim v(x, A, h) = — (x, A)
h—0 0A

exists. Then the function

v(x, A) = u(x, A)

is also a solution of (9.5) provided that

p u(x, A)] = [Pu(x, A)].

All these methods of superposition, when they are valid, enable us to
extend a known collection of solutions of a homogeneous equation to a
much larger collection of solutions. We will see many examples of this in
later chapters.

It should be pointed out that the principle of superposition is not valid
for partial differential equations which are not linear. This can be easily
seen by an example (see Problem 9.1). For this reason, it is much more
difficult to obtain solutions to nonlinear partial differential equations.

Problems

9.1. Let P be the nonlinear partial differential operator in R2 defined by

Iau 3u\2
Pu=(—+——I —u2.

\3x 3y/

Show that the functions

u1(x, y) = ex, u2(x, y) =

are solutions of the homogeneous equation

Pu = 0

while their sum

u(x, y) = ex +

is not a solution.
9.2. Let P be a linear partial differential operator.
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(a) Show that if u1 and u2 are solutions of the nonhomogeneous
equations

Pu=f1 and Pu=f2,
respectively, then u = c1u1 + c2u2 is a solution of the equation

Pu = c1f1 + c,f2.

(b) Show that if, for each value of X in an interval I of R', the
function u(x, A) is a solution of the equation

Pu(x, A) = fix, A),

and if, for some real-valued function g defined on I, the integrals

fg(A)u(x, A)dA, A)dA

are convergent, then the function

u(x) = A)dA

is a solution of the equation

Pu(x) = fix)

where

fix) = X)dA.

Assume that the interchange of the order of application of P and
of integration with respect to A over I is valid.

9.3. (a) Verify that

u(x, y; A) = cos Xx, —00 <A <oo

is a one-parameter family of solutions of Laplace's equation in
R2.

(b) Calculate v(x, y; A) = y; A) and verify that v(x, y; A), —00 <

A < 00, is also a one-parameter family of solutions of Laplace's
equation in R2.

(c) For (x, y) in the upper half-plane y > 0, the improper integral

v(x, y)
= f u(x, y; X)dX = cos Xx dX

is convergent. Evaluate this integral and show by direct computa-
tion that v(x, y) is a solution of Laplace's equation in the upper
half-plane.

Reference for Chapter V
1. Garabedian, P. R.: Partial Differential

Equations, New York: John Wiley &
Sons, Inc., 1964.



CHkPTER VI
Equations of mathematical

physics

In this chapter we discuss three of the most important partial differen-
tial equations of second order which arise in mathematical physics: the
heat equation, the Laplace equation and the wave equation. In Section 1
we review the statement of the Divergence Theorem and we derive two
useful integral identities known as the Green's identities. In Section 2 we
derive the equation of heat conduction and describe various initial-bound-
ary value problems associated with it. In Section 3 we describe physical
phenomena, known as steady state phenomena, that are governed by
Laplace's equation. In Section 4 we describe some physical phenomena
that lead to the one-, two- and three-dimensional wave equation. Finally,
in Section 5 we define what is a well-posed problem associated with a
partial differential equation, and we give examples of some problems
which are well-posed and others which are not.

1. The Divergence Theorem and the Green's Identities
The divergence theorem is one of the most useful theorems in the study

of partial differential equations. This theorem is usually studied in a course
on advanced calculus. In this section we review the statement of the
theorem and present some immediate applications of it.

Let fl be a bounded domain in R3 satisfying the following conditions:
(a) The boundary S = 3fl of fl consists of a finite number of smooth
surfaces. (Recall that a smooth surface is a level surface of a C' function
with nonvanishing gradient.)
(b) Any straight line parallel to any of the coordinate axes either inter-
sects Sat a finite number of points or has a whole interval common with S.

Let ii = (n1, be the unit normal vector to S directed in the
direction exterior to fl (see Fig. 1.1). Let

(1.1) V(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))

be a vector field defined in the closure of fl such that each of the
153
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/
Fig. 1.1

component functions P, Q, R are in and in and suppose that
the integral

aP aQ aRfff(—+—+—)dxdydz
ax ay az

is convergent.
Under the above assumptions on fl and V the divergence theorem

asserts that

(1.2) JJJ + +
dxdydz

= Jf + +

where do- is the element of surface on S. The integrand on the left of
equation (1.2) is known as the divergence of the vector field V and is
denoted by

(1.3)
8x 8y az

where V stands for the differentiation "vector" V = (8/8x, a/ay, a/az) =
(D1, D2, D3). The integrand on the right of equation (1.2) is the component
of V in the direction of the exterior normal to the boundary S. In vector
notation, equation (1.2) takes the form

n
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(1.4) Jffdivvdxdydz = JJV.ndo-,

or, in even more compact notation,

(1.5) JV.Vdv= JV.ndo.

In words, the divergence theorem asserts that if the domain fi and the
vector field V satisfy the conditions stated above, then the integral over fi
of the divergence of V is equal to the integral over the boundary S of fi of
the component of V in the direction of the exterior normal to S.

Conditions (a) and (b) are not the most general conditions on the
domain fi for the divergence theorem to hold. More general conditions
can be found, for example, in the book of Kellogg.1 Domains which
satisfy these general conditions are called "normal." Certainly all the
domains that we consider in this book are normal.

Two immediate applications of the divergence theorem are known as
the Green's identities. We use here the usual notation of vector calculus.
If u is a C2 function of three variables,

f8u 8u au
(1.6) Vu = grad u = —, —

\t9X 8y 8z

and

82u t92u
(1.7) V2u = VVu = div grad u = — + — + —.

8x2 8y2 az2

The partial differential operator V2 is known as the Laplace operator and
is also denoted by the symbol

(1.8) = V2u.

The following differential identity can be verified by direct computation
(see Problem 1.1),

(1.9) uV2w = V.(uVw) — (Vu)(Vw).

Suppose now that u and w are in C2(fl) and in C1(fl)and that the integral

f
-'Il

is convergent. Then, integration of (1.9) over fl yields

f uV2wdv = j V (uVw)dv
—

j (Vu) (Vw)dv.

Applying the divergence theorem to the first integral on the right (with the
vector field V = uVw) and using the fact that Vwn is the directional
derivative aw/an, we obtain the first Green's identity

I t3w f
uV2wdv = j u — do- — I (Vu) (Vw)dv.

is an
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Interchanging u and w in (1.9) and subtracting the resulting identity
from (1.9) yields

(1.11) uV2w — wV2u = V(uVw — wVu).

If u and w are in and in and if the integral

j (uV2w — wV2u)dv

is convergent, then integration over of identity (1.11) and application
of the divergence theorem yields the second Green's identity

(1.12) j (uV2w — wV2u)dv
= j (u — w do-.

The Green's identities will be used in the study of Laplace's equation
(Chapter VII).

The divergence theorem and the Green's identities are valid for vector
fields and functions of any number of independent variables.

Problems

1.1. Verify the differential identity (1.9).
1.2. Let u be in C2(fl) and in where fi is a normal bounded domain

in R'1, and suppose that

V2u = 0 in

u = 0 on S,

where S is the boundary of fl. Show that u 0 in fi. [Hint: In the first
Green's identity set w = u. Also use the fact that if the integral over

of a continuous nonnegative function is equal to zero, then the
function is identically zero in fi.]

1.3. Let u be in and in C'(fl), where fi is a normal bounded domain
in and suppose that

V2u = 0 in fi,

au— = 0 on S.
8n

Show that u constant in
1.4. Let u E C2(fl) fl C'(fl) be a nontrivial solution of

V2u + Au = 0 in

u = 0 on 5,

where fi is a bounded normal domain, and A is a constant. Show that
A � 0.

2. The Equation of Heat Conduction
In this section we first derive the partial differential equation that must

be satisfied by a function which describes the process of heat conduction
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in a body. We then discuss the supplementary conditions that must be
specified in order to determine the temperature distribution in the body.

Let fl denote the interior of the body and let the function u(x, y, z, t)
denote the temperature at the point (x, y, z) of the body at the time t. We
assume that u(x, y, z, t) is C2 with respect to the space variables x, y, z and
C' with respect to the time variable t.

The process of heat conduction is based on the following physical law.
Let S be a smooth surface in fl and let n denote a unit normal vector on
S. The amount of heat (thermal energy) q that crosses S to the side of the
normal n in the time interval from t1 to t2 is given by the formula

(2.1)
t12

q = — Jf k(x,y,z)?dudt.
S

In (2.1) 8u/8n denotes the directional derivative of u in the direction of the
normal n at the point (x, y, z) of S and at the instantt. The function k(x, y,
z) is positive and is called the thermal conductivity of the body at the point
(x, y, z). We assume that the thermal conductivity k(x, y, z) is a function of
position (x, y, z) only and does not depend on the direction of the normal n
to the surface S at the point (x, y, z). Bodies for which this assumption
holds are said to be isotropic with respect to thermal conductivity.

Let us consider now within fl a subregion A bounded by a smooth
closed surface S with exterior unit normal n (see Fig. 2.1). The change in
the amount of heat in the subregion A from t = t1 to t = t2 is given by

x

Fig. 2.1
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(2.2) JfJ c(x, y, z)p(x, y, z)[u(x, y, z, t2) — u(x, y, z, t1)]dxdydz.

In (2.2) c(x, y, z) is the specific heat and p(x, y, z) is the density of the body
at the point (x, y, z). According to the law of conservation of thermal
energy, this change of heat in A must be equal to the amount of heat that
enters into A across the boundary S in the time interval from t = t1 tot =
and this amount of heat is given by

(2.3) j y, z)

Equating the quantities (2.2) and (2.3) we obtain

(2.4) JJJ c(x, y, z)p(x, y, z)[u(x, y, z, t2)

— u(x, y, z, t1)]dxdydz
= j ff k(x, y, z) do- dt.

Now,

£2 au
u(x, y, z, t2) — u(x, y, z, t1)

= f (x, y, z, t)dt

and, since 8u/8n = Vun, the divergence theorem applied to the vector
field V = kVu yields

Jfk du = fffv.(kvu)dxdydz.

Hence, equation (2.4) becomes

fJJ'J cp dxdydzdt
= ffJJ'

(2.5) j fJf [cp — V (kVu)]dxdydzdt = 0.

Since the integrand in (2.5) is continuous and since (2.5) is valid for all
subregions A and all intervals [t1, t2], it follows (see Problem 2.1) that the
integrand must be zero for all (x, y, z) in fl and for all t. Thus

cp — V(kVu) = 0
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or

au i a / au\ a / 3u\ 8 / 8u\1
(2.6) cp— — I— (k—I +— (k—I +— (k—Il = 0.

at Lax \ ax! ay \ ayi az \ az/i
Equation (2.6) is known as the equation of heat conduction in an

isotropic body. It is also known as the heat equation or the equation of
diffusion. If the body, in addition to being isotropic, is also homogene-
ous, then k, p and c are constant and equation (2.6) takes the form

cp au /a2u a2u 82u\
(2.7)

k at \ax2 ay2 az2/

Equation (2.7) can be simplified by changing the time scale: setting t' =
(kkp) t and then dropping the prime, (2.7) becomes

au /a2u a2u a2u\
(2.8)

at \ax2 ay2 az2/

We conclude that if a function u(x, y, z, t) is to describe the history of
the temperature distribution in a homogeneous isotropic body during a
certain interval of time, then u(x, y, z, t) must satisfy equation (2.8) for all
(x, y, z) in the interior fl of the body and for all t in that time interval.
However, equation (2.8) has infinitely many solutions. In order to select
from this infinity of solutions the particular solution which describes the
actual temperature distribution in the body, supplementary conditions
must be specified.

From physical considerations it is reasonable to expect that the specifi-
cation of the temperature distribution in the body at some instant of time
t0, together with the specification of the temperature distribution on the
boundary an of the body for all t t0, completely determines the
temperature distribution in the body for all time t t0. The condition

(2.9) u(x, y, z, t0) = 4(x, y, z), (x, y, z) E fl

which specifies the temperature distribution in the body at the instant t0 is
known as an initial condition. The function y, z) is a given function
defined in the closure fl of fl. The condition

(2.10) u(x, y, z, t) = f(x, y, z, t); (x, y, z) E t

which specifies the temperature distribution on the boundary an of the
body for all t t0 is known as a boundary condition. The functionf(x, y, z,
t) is a given function defined for (x, y, z) on the boundary and for all t

t0. The problem of finding the solution of the p.d.e. (2.8) which satisfies
the initial condition (2.9) and the boundary condition (2.10) is known as
an initial-boundary value problem. It can be shown, under some additional
assumptions, that this problem has a unique solution u(x, y, z, t) defined
for all (x, y, z) in fl and all t t0 (see Chapter IX). This function describes
the history of the temperature distribution in the body for all t t0.

Condition (2.10) is not the only boundary condition which, together
with the initial condition (2.9), determines a unique solution of the heat
equation. Instead of specifying the temperature on the boundary of the
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body, one might wish to specify the heat flux across the boundary. This
leads to the boundary condition

(2.11) (x, y, z, t) = g(x, y, z, t); (x, y, z) E I

where 8u/8n denotes the directional derivative of u in the direction of the
exterior normal n to afl. The function g(x, y, z, t) is a given function
defined for (x, y, z) on 3f1 and for t t0. In the case of an insulated
boundary, g = 0. Still another boundary condition can be specified. A
knowledge of the temperature of the medium surrounding the body and of
the heat flux across the boundary leads to the condition

(2.12) a(x, y, z) (x, y, z, t) + f3(x, y, z)u(x, y, z, t)
an

= h(x, y, z, t); (x, y, z) E 3(1, t t0.

The functions a(x, y, z) and /3(x, y, z) are given and defined for (x, y, z) on
8f1 and h(x, y, z, t) is given and defined for (x, y, z) on and t t0.

Let us consider now a plate of constant thickness with its two plane
surfaces insulated. If the initial temperature distribution does not vary
across the thickness of the plate, then at any later time the temperature in
the plate does not vary across its thickness, and if we choose the coordi-
nate system with the z-axis perpendicular to the plate, the temperature in
the plate is a function of x, y and t only. The heat equation (2.8) for the
plate becomes

au /82u 82u\
(2.13) —— I—+—l=0.

& \&2

Finally let us consider a cylindrical rod with its cylindrical surface insu-
lated and initial temperature constant in each cross section. If we choose
the coordinate system with the center line of the rod along the x-axis, then
the temperature does not vary over a cross section and so will be a function
of x and t only. The heat equation for the rod is

au a2u
(2.14) ———=0.

8t 8x2

In closing this section it should be mentioned that equations (2.6) and
(2.8) arise also in the study of the diffusion of a fluid through a porous
medium and in the study of other diffusion processes involving liquids and
gases.

Problems

2.1. Let f(x1, ..., be a continuous function in some domain fi of and
suppose that for every subregion A in

(2.15) , = 0.

Show thatf must be identically zero in fl. [Hint: Supposef is positive
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at some point Poffi. Sincefis continuous,f will be positive in some
ball centered at P. Consider (2.15) when A is taken to be this ball.]

2.2. Derive equation (2.8) from (2.7).
2.3. Write down the initial-boundary value problem that must be solved

to determine the history of temperature distribution in a cylindrical
rod of length L with insulated cylindrical surface, given the initial
temperature distribution in the rod at t = t0 and the temperature at
the two ends of the rod for all t t0.

3. Laplace's Equation
Laplace's equation

32u 82u t92u
(3.1) —+—+—=O

3x2 ay2 8z2

arises in the study of a large class of physical phenomena known as steady
state phenomena. These phenomena are characterized by the fact that
they do not depend on the time variable t. Let us consider for example
the steady state temperature distribution u in a homogeneous, isotropic
body. Since the function u does not depend on the time variable t, au/at =
0 and the equation of heat conduction becomes Laplace's equation (3.1).
If ci denotes the interior of the body, the steady state temperature u(x, y,

z) must satisfy equation (3.1) at every point (x, y, z) in fl.
Equation (3.1) has infinitely many solutions. In order to pick out the

particular solution which describes the actual temperature distribution in
the body, supplementary conditions must be specified. In contrast with
the heat equation (2.8) which describes a time dependent phenomenon, no
initial condition needs to be specified for equation (3.1). The time-in-
dependent forms of the boundary conditions (2.10), (2.11) and (2.12) are

(3.2) u(x, y, z) = fix, y, z), (x, y, z) E afI,

(3.3) (x, y, z) = g(x, y, z), (x, y, z) E
an

(3.4) a(x, y, z) (x, y, z) + y, z)u(x, y, z)

= h(x, y, z), (x, y, z) E sf1.

The problem of finding the solution of Laplace's equation (3.1) satisfying
one of the boundary conditions (3.2), (3.3) or (3.4) is called a boundary
value problem. More specifically, the problem of finding the solution of
(3.1) satisfying the boundary condition (3.2) is known as the Dirichiet
problem. The problem of solving (3.1) subject to the boundary condition
(3.3) is known as the Neumann problem. Finally, the problem of solving
(3.1) subject to the boundary condition (3.4) is known as the mixed
problem or third boundary value problem. These problems will be studied
in Chapter VII.

In the case of a plate of constant thickness with insulated plane sur-
faces, the steady state temperature u is a function of two variables only
and so satisfies the two-dimensional Laplace's equation
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02u t32u
(3.5) —+---—=O,

0x2 0y2

(compare with equation (2.13)).
The two-dimensional Laplace equation also governs the shape of a

stretched membrane such as the membrane of a drum. A membrane
resists any further stretching (i.e., change in the area of any portion of the
membrane) but does not resist any change in its shape. Let us suppose
that the stretched membrane occupies a region of the (x, y)-plane bounded
by a smooth closed curve C, and let fi denote the interior of this region.
The u-axis is taken to be orthogonal to the (x, y)-plane (see Fig. 3.1). Let
the boundary C be given parametrically by the equations

x = x(s), y = y(s); s E I.

Suppose now that each point of the boundary of the membrane is dis-
placed along a line perpendicular to the (x, y)-plane and that the boundary
is then fastened along a space curve C. The curve C projects on the (x, y)-
plane onto the curve C and is given by the equations

x = x(s), y = y(s), u = s E I.

The membrane then takes the shape of a surface given by an equation of
the form

u = u(x, y); (x, y) E ci.

We make now the following assumptions: (a) In displacing the membrane
from the (x, y)-plane to its final shape u = u(x, y), each point of the
membrane moves only along a line parallel to the u-axis, (b) The mem-
brane is bent only by a small amount so that the derivatives 8u/0x and
8u/8y are small. Under the assumptions (a) and (b) it can be shown that
the function u(x, y) must satisfy the two-dimensional Laplace's equation
(3.5). Thus, in order to determine the final shape of the membrane we
must solve the Dirichlet problem

32u

0x 3y

u(x, y) = 4(x, y); (x, y) E C.

Laplace's equation arises also in the study of force fields which are
"derivable from a potential." For example let F be a force field due to a
distribution of electric charges in space. F(x, y, z) is the force vector that
would act on a unit charge placed at the point (x, y, z). It can be shown
that F is derivable from a potential function u; i.e., there is a function u
such that

F = —grad u.

The potential u satisfies Laplace's equation at every point of space which
is free from electric charge. A gravitational force field due to a mass
distribution in space is also derivable from a potential and its potential
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Fig. 3.1
function satisfies Laplace's equation at every point of space which is free
from mass.

4. The Wave Equation
Vibration and wave propagation phenomena are governed by a partial

differential equation known as the wave equation.
Let us consider first the vibrations of a stretched string such as the

string of a guitar. Suppose that the length of the string is L and that, when
the string is in equilibrium, it occupies the portion of the x-axis from x = 0
to x = L (see Fig. 4.1). We assume that the string vibrates in a plane, the
(x, u)-plane, and that each point of the string moves only along a line
perpendicular to the x-axis (parallel to the u-axis). u(x, t) denotes the
displacement at the instant t of the point of the string located (when in
equilibrium) at x. Under the additional assumption that au/ax is small (i.e.,
the vibrations of the string are small in amplitude) it can be shown that
u(x, t) must satisfy the p.d.e.

(4.1)
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U

Fig. 4.1

where T is the tension of the string and p is its linear density. Equation
(4.1) is known as the equation of the vibrating string or the string
equation. It is also known as the one-dimensional wave equation. Setting
c = (Tip)112, equation (4.1) becomes

42 au 1 au0
.3x2 C2at2

As we will see in Chapter VIII, c is the speed of wave propagation in the
string. Equation (4.2) can be simplified by changing the time scale: Setting
t' = Ct and then dropping the prime, (4.2) becomes

(4.3) — = 0.
ax2 at2

The function u(x, t) describing the history of motion of the string must
satisfy equation (4.3) for every point x in the open interval 0 <x <L and
for every 1. Equation (4.3) has infinitely many solutions and in order to
pick out the particular solution describing the actual vibration of the string
supplementary conditions must be specified. Just as in the case of the heat
equation, these conditions fall into two categories, initial conditions and
boundary conditions. In contrast to the heat equation, two initial condi-
tions need to be specified at the initial instant t0,

(4.4) u(x, t0) = 4(x), 0 x L

(4.5) x L.

Condition (4.4) specifies the initial displacement of the string, while
condition (4.5) specifies its initial velocity. Several types of boundary
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conditions at the ends x = 0 and x = L of the string are possible,
depending on the manner in which these ends are fastened or excited.
These conditions specify the values of u or of the derivative au/ax at the
ends of the string for all I t0. For example, if both ends of the string are
fixed, then,

(4.6) u(0, t) = 0, u(L, I) = 0; t

The problem of finding the solution of the wave equation (4.3) subject to
the initial conditions (4.4), (4.5) and to the boundary conditions (4.6)is an
initial-boundary value problem.

If the string is "infinite" no boundary conditions need to be specified,
and the problem of finding the solution of the wave equation (4.3) subject
to the initial conditions

(4.7) u(x, t0) = —00 <x < 00

au
(4.8) — (x, = —00 <x <

is an initial value problem or a Cauchy problem (compare with Chapter
IV). The solution of this problem can be obtained using the general
solution (7.22) of the wave equation which was derived in Chapter V.

Let us consider now the vibrations of a stretched membrane. Let u(x, y,
t) denote the displacement at-the instant t of the point of the membrane
located at (x, y) (see Fig. 3.1). Under the assumptions stated in Section 3,
it can be shown that u(x, y, 1) must satisfy the equation

a2u a2u I a2u
(4.9) —+————=0

ax2 ay2 c2 at2

where c = (Tip)"2, Tbeing the tension of the membrane and pits surface
density. Equation (4.9) is known as the equation of the vibrating mem-
brane or the two-dimensional wave equation. Just as in the case of the
vibrating string, two initial conditions must be specified,

(4.10) u(x, y, = çb(x, y), (x, y) E

(4.11) (x, y, = (x, y) E ft

Again, a variety of boundary conditions may be specified, depending on
the manner in which the boundary of the membrane is fastened or excited.
For example, if the boundary is fastened along a plane curve lying on the
(x, y)-plane, the boundary condition that must be satisfied is

(4.12) u(x, y, t) = 0; (x, y) E I

Finally let us consider the propagation of acoustical (sound) waves.
These are small vibrations of a gas, such as air, that occupies a region in
three-dimensional space. Let 11 denote the interior of this region and let
u(x, y, z, t) denote the deviation from ambient (normal) pressure of the gas
at the point (x, y, z) of and at the instant t. Under some hypotheses, it
can be shown that u must satisfy the p.d.e.
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a2u .32u .32u 1 .32u
(4.13) —+—+————=O,

ax2 ay2 az2 c2 at2

where c is the speed of propagation of sound in the gas. Equation (4.13) is
known as the equation of acoustics or the three-dimensional wave equa-
tion. The initial and boundary conditions associated with equation (4.13)
are similar with those associated with the one and two-dimensional wave
equations.

Many other vibration and wave propagation phenomena such as the
propagation of electromagnetic waves are also described by the wave
equation.

Problem

4.1. In Chapter V, Section 7, we have shown that the general solution of
the one-dimensional wave equation (4.3) is given by

u(x, t) = F(x + t) + G(x — t)

where F and G are arbitrary functions of a single variable.
(a) Use this general solution to derive the following solution of the

initial value problem (4.3), (4.7), (4.8), with t0 = 0:

1 1

(4.14) u(x, t) = — + t) + — t)]+
— J

LJJ(T)dr.
2

(b) Show by direct substitution that (4.14) satisfies the wave equa-
tion (4.3) and the initial conditions (4.7) and (4.8), with t0 = 0.

5. Well-Posed Problems
In the preceding three sections of this chapter we have seen how the

study of many physical phenomena leads to problems involving partial
differential equations. Let us recall two of the simplest of these problems.
If u(x, y) represents the steady state temperature distribution in a bounded
homogeneous isotropic plate with insulated plane surfaces and if the
temperature on the boundary of the plate is known, then u must be a solu-
tion of the boundary value problem

(5.1) (x,y)Efl
ax ay

(5.2) u(x, y) = fix, y), (x, y) E

where 11 is the interior of the plate and an its boundary. If u(x, t)
represents the displacement of an "infinite" string and if the displacement
and velocity of the string are known at the initial instant t = then u must
be a solution of the initial value problem

a2u .32u
(5.3) ———=0; —oo<x<oo, to<t

ax2 at2

(5.4) u(x, t0) = 4(x), —°° < x < °°
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(5.5)

It is reasonable to expect that knowledge of the temperature at the
boundary of the plate should completely determine the temperature at
every point of the plate. It is the task of the mathematical analysis to show
that this is actually the case. In order to do this we must show that the
boundary value problem (5.1), (5.2) has a unique solution u(x, y) defined
in fl. It should be noted carefully that this last statement consists of two
parts: (1) the problem has a solution (existence of a solution) and (ii) the
problem has at most one solution (uniqueness of the solution). Similarly,
it is reasonable to expect that knowledge of the displacement and velocity
of the string at the initial instant should completely determine the
motion of the string for all subsequent time t Again, in order to prove
this, the mathematical analysis should show that the initial value problem
(5.3), (5.4), (5.5) has a unique solution u(x, t) defined for all —00 <X < 00
and t

In subsequent chapters we will show that the problems (5.1), (5.2) and
(5.3), (5.4), (5.5) have unique solutions. We will then describe methods for
finding these solutions. However, in order to make sure that these solu-
tions describe the physical phenomena under consideration in a satisfac-
tory manner, we should also examine the dependence of the solutions on
the data of the problems. Let us consider first the problem (5.1), (5.2). In
practice, the function f(x, y), which describes the temperature distribution
on the boundary of the plate, is determined by experimental measure-
ments which are subject to error. We must make sure that a small error in
the dataf(x, y) does not produce a very large error in the solution u(x, y) of
the problem. In order to make this more precise let u be the solution of the
problem with datafand let u' be the solution of the problem with different
data f'. We say that the solution of problem (5.1), (5.2) depends continu-
ously on the data of the problem if, given any number 0, there is a
number > 0 such that

max
I
u(x, y) — u'(x, y) <€

(x,v)€fl

provided that
max If(x, y) —f'(x, y) I <6.

(xv) EaR

In other words, the solution of the problem is said to depend continuously
on the data if the maximum of the change in the solution over can be
made as small as we please by requiring that the maximum of the change
in the data over 311 is sufficiently small. The continuous dependence of
the solution of problem (5.3), (5.4), (5.5) on the initial data 4) and is
defined in a similar way (see Problem 5.1).

Definition 5.1. A problem involving a partial differential equation is
said to be a well-posed problem if the following three requirements are
satisfied:

(a) A solution of the problem exists.
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(b) The solution is unique.
(c) The solution depends continuously on the data of the problem.

In studying a physical phenomenon by reducing it to a problem involv-
ing a p.d.e., it is not enough to establish that the problem has a unique
solution. It is also necessary to know that the solution depends continu-
ously on the data of the problem. Otherwise we cannot be sure that the
solution of the problem describes the physical phenomenon with any
required degree of accuracy.

The main goals of the study of partial differential equations are the
following:

1. To determine the conditions under which a problem is well-posed.
2. To describe methods for finding the solution or an approximation to

the solution of a well-posed problem.
3. To determine general properties of the solution.
We will show in Chapter VII that under certain assumptions the bound-

ary value problem (5.1), (5.2) is well-posed. Under certain assumptions,
the initial value problem (5.3), (5.4), (5.5) is also well-posed. In fact we
have already established the existence of a solution in Problem 4.1 since
(4.14) is a solution to the problem. In Chapter VIII we will show that the
solution is unique and hence it is given by (4.14). Using this formula for
the solution, we can also show that the solution depends continuously on
the initial data (see Problem 5. 1).

It should be emphasized that not every seemingly reasonable problem
is well-posed. Fortunately, the study of the great majority of physical
phenomena lead to initial, or boundary, or initial-boundary value prob-
lems which are well-posed.

It turns out that each partial differential equation has certain problems
associated with it which are well-posed while other problems are not well-
posed. In order to illustrate this let us consider again the boundary value
problem (5.1), (5.2) and the initial value problem (5.3), (5.4), (5.5). These
problems, which are well-posed, are strikingly different even though the
Laplace equation and the wave equation differ only by a sign. It is natural
to also examine the initial value problem (Cauchy problem) for the
Laplace equation and the boundary value problem (Dirichlet problem) for
the wave equation. It turns out that these problems are not well-posed.
That the initial value problem for the Laplace equation is not well-posed
was first shown by Hadamard (see Problem 5.2). We know from the
Cauchy-Kovalevsky theorem that this problem has a unique solution if
the initial data are assumed to be analytic. However, the problem fails to
be well-posed because the solution does not depend continuously on the
initial data. An example of a boundary value problem for the wave
equation which is not well-posed is described in Problem 5.3. This
problem is not well-posed because it has infinitely many solutions.

Problems

5.1. (a) Define what is meant by saying that the solution of the initial
value problem (5.3), (5.4), (5.5) depends continuously on the
initial data 4 and of the problem.



Equations of Mathematical Physics 169

(b) Use formula (4.14), which gives the solution of the problem when
= 0, to show that if 4 and vanish outside a finite interval,

then the solution of the problem depends continuously on the
initial data.

5.2. Hadamard's example.
(a) Consider the Cauchy problem fpr Laplace's equation in R2,

fa2u
I
j ay2 ax2

(5.6) / u(x, 0) = 0,

where n is a positive integer. Show that

(5.7) u(x, y) = sinh fly sin

is the solution to (5.6).
(b) Show that by takingn sufficiently large, the absolute value of the

initial data in (5.6) can be made everywhere arbitrarily small,
while the solution (5.7) takes arbitrarily large values even at
points (x, y) with as small as we wish.

(c) Letf and g be analytic, and let u1 be the solution to the Cauchy
problem

32u a2u—+—=0
ay2 ax2

(5.8) u(x,0)=f(x)
0) = g(x)

and u2 be the solution to the Cauchy problem

a2u a2u—+—=0
ay2 ax2

(5.9) u(x, 0) = f(x)

0) = g(x) + sin nx.

Show that

(5.10) u2(x, y) — u1(x, y) = sinh fly sin nx

(d) Study the difference in the initial data and the difference in the
solutions of problems (5.8) and (5.9). Conclude that the solution
to the Cauchy problem for Laplace's equation does not depend
continuously on the initial data.

5.3. Consider the Dirichiet problem for the wave equation,
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a2u .32u—--—=0; O<x<L O<t<T
ax2 at2

u(O, t) = u(L, t) = 0; 0 t T,

u(x,O)=u(x,T)=O;
where the ratio TIL is a rational number, say TIL = rn/n where rn and
n are positive integers. Show that

nirx mirt
u(x, t) = C sin sin

is a solution of the problem for every arbitrary constant C, and that
the problem therefore has infinitely many solutions.

Reference for Chapter VI
1. Kellogg, 0. D: Foundations of Potential

Theory, New York: Dover Publications,
Inc., 1953.



CHF\PTER VII

Laplace's equation

This chapter is devoted to the study of Laplace's equation. This equa-
tion is of great interest to mathematicians and to engineers and scientists,
because it arises in the study of many physical phenomena. In Section 1,
harmonic functions are defined to be solutions of Laplace's equation
which are twice continuously differentiable. In Sections 2 and 3 a large
collection of harmonic functions is obtained using the methods of separa-
tion of variables, changes of variables and inversions with respect to
circles and spheres. In Section 4, the boundary value problems associated
with Laplace's equation are carefully described and are illustrated with
physical examples. In Section 5 we use Green's second identity to prove a
representation theorem which gives the value of a function at a point in
terms of certain volume and surface integrals involving the function, its
derivatives and the Laplacian of the function. This representation theo-
rem is then used to prove certain fundamental properties of harmonic
functions. Section 6 is devoted to the study of the well-posedness of the
Dirichlet problem which asks for a function which is harmonic in a
domain and has given values on the boundary of the domain. The solution
of the Dirichlet problem for the unit disc is obtained in Section 7 using
Fourier series. This solution is in series form. Summing this series yields
the famous Poisson's integral formula for the solution. An elementary
introduction to the subject of Fourier series is given in Section 8. In
Section 9 the representation theorem of Section 5 is used to derive an
integral formula for the solution of the Dirichlet problem for any domain,
in terms of a function known as the Green's function for the domain. The
Green's function and the solution of the Dirichlet problem for a ball in
three-dimensional space are derived in Section 10. Section 11 is devoted
to the study of further properties of harmonic functions. In particular the
analyticity of harmonic functions is proved. In Section 12 it is shown how
the Dirichiet problem for an unbounded domain can be transformed to the
corresponding problem for a bounded domain using inversion with re-
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spect to circles and spheres. In Section 13 the Green's function for a
region in three-dimensional space is interpreted as the potential due to a
unit charge at a point of the region, if the boundary of the region is a
grounded conducting surface. This interpretation leads to the method of
electrostatic images for the construction of Green's functions. Section 14
describes the application of complex analysis to the study of Laplace's
equation in two dimensions. In Section 15 the method of finite differences
for obtaining approximate solutions of the Dirichiet problem is described.
This numerical method is also applicable to problems associated with
other p.d.e.'s. Finally, Section 16 is devoted to a brief study of the
Neumann problem which asks for a function which is harmonic in a
domain and has given normal derivative on the boundary of the domain.

1. Harmonic Functions
Laplace's equation

2

(1.1) —+—+•••
.3x12

is the simplest and most important linear partial differential equation of
elliptic type. As we saw in Chapter VI, this equation arises in the study of
many physical phenomena. For this reason and also because the equation
plays a fundamental role in the study of linear p.d.e.'s, equation (1.1) has
been investigated by many mathematicians.

We are interested only in solutions of equation (1.1) which are twice
continuously differentiable. Such solutions are called harmonic functions.

Definition 1.1. Let be a domain in R'1. A function u E C2 (fl) which
satisfies Laplace's equation in is said to be harmonic in fl.

Harmonic functions are not the only functions which satisfy Laplace's
equation. In fact, there are functions which are not even continuous, but
which nevertheless are solutions of Laplace's equation in the sense that
their second order partial derivatives t32u/ax12, exist, and the
sum of these derivatives is equal to zero. (See Problem 1.4.) In more
advanced books, a harmonic function is defined to be a continuous
function which satisfies Laplace's equation. Our definition is only seem-
ingly more restrictive as the following fundamental theorem shows.

Theorem 1.1. Let u be a continuous solution of Laplace's equation in a
domain Then u is analytic in

According to this theorem, defining a harmonic function as a solution of
Laplace's equation which is C2 or merely continuous makes no real
difference since in either case the function is actually analytic. All the
theorems of this chapter concerning harmonic functions may be proved
using only the assumption of continuity. We chose to assume that a
harmonic function is C2 in order to make the proofs of the theorems as
simple as possible.

The proof of Theorem 1.1 is difficult and we will prove only a special
case of it. The assertion of the theorem is valid for solutions of any elliptic
equation with analytic coefficients.
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The smoothness of solutions of elliptic equations is related to the fact
that these equations have no characteristic surfaces. It is also related to
the fact that elliptic equations describe steady state phenomena. Any initial
uneveness is smoothed out by the time the steady state is attained.

Problems

1.1. Prove that all linear functions

are harmonic in
1.2. (a) Show that u = xy and u = x2 — y2 are harmonic in R2.

(b) Find all homogeneous polynomials of degree 2 which are har-
monic in R2.

1.3. (a) Show that u = log (x2 + y2) is harmonic in the domain consisting
of R2 excepting the origin.

(b) Show that u = (x2 + y2 + is harmonic in R3 excepting the
origin.

1.4. Let z = x + iy be the complex variable. Consider the function u
defined in R2 by

— JRe for (x, y) (0, 0)
— 0, for (x, y) = (0, 0).

Show that u satisfies Laplace's equation everywhere in R2 and that u is not
continuous at the origin.

2. Some Elementary Harmonic Functions. The Method of
Separation of Variables

Our aim in this section is to obtain a collection of simple harmonic
functions. Although this collection is rather small, it is possible to greatly
enlarge its size by using the principle of superposition and other methods
which will be described in the following sections. Recall that, according to
the principle of superposition, if we have a collection of functions which
are defined and harmonic in some domain of then every linear
combination of these functions is also harmonic in

Let us first recall (see Chapter VI) that the electrostatic potential at any
point (x, y, z) * (0, 0, 0), due to a unit charge located at the origin of R3,
is proportional to hr where r is the distance of (x, y, z) from the origin, r =
(x2 + y2 + It is well known in physics that the potential due to any
distribution of charges satisfies Laplace's equation at any point of space
free from charge. It takes a simple computation to show that the function

is a harmonic function in R3 excepting the origin.
The function (2.1) is distinguished by its symmetry about the origin; it

depends only on the radial distance r from the origin and does not depend
on the angular variables 0 and 4 (see Fig. 2.1). This suggests that we try to
find all harmonic functions in R'1 which depend only on the radial variable
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(x,y,z)
(r, 0,

y

x = r sin COS 0

y = r sin sin 0
z = r cos

Fig. 2.1. Spherical coordinates in A3

r. In order to do this we need the expression of Laplace's operator in R'
in terms of spherical coordinates (polar coordinates in R2). In R2 we have

ia /au\ la2u
(2.2)

r ar \ an r2a02

and in with n > 2, we have

(2.3) = (en_i +
.9r \ .9r/ r2

where is a second order partial differential operator involving differen-
tiations with respect to the angular variables only. In R3,

(2.4)

(2.5)

We will not need the explicit expression of for n > 3.
It is now easy to find the harmonic functions which depend only on r. In

R2, a harmonic function u(r) must satisfy the equation
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This is actually an ordinary differential equation of the second order
which can be easily solved. The functions

(2.6) 1, log r (n = 2)

are two linearly independent solutions of (2.5) and the general solution
consists of all linear combinations of these functions. In with n > 2, a
harmonic function u(r) must satisfy the equation

(2.7) (rn_i =ar \ an

and two linearly independent solutions of this equation are

(2.8) (n > 2).

Note that the first function in (2.6) and (2.8) is defined and harmonic in the
whole of while the second function is defined and harmonic only in the
complement of the origin of We will sometimes say that log r is a
harmonic function in R2 with pole at the origin and is a harmonic
function in n > 2, with pole at the origin.

We will now use the method of separation of variables or Fourier
method to obtain other elementary harmonic functions. We do this first
for R2. The method consists of trying to find harmonic functions u(r, 0)
which have the special form

(2.9) u(r, 0) = R(r)ø(0),

that is, we assume that u(r, 0) is the product of a function of r times a
function of 0. Since we are only interested in real valued harmonic
functions, the functions R and 0 are assumed to be real valued. Substitut-
ing (2.9) into Laplace's equation in polar coordinates, we obtain

r r2

where the primes denote ordinary differentiation. Dividing this equation
by R 0, multiplying by r2 and transferring the third term to the right side,
we obtain

(2.10)
r2R" + rR' = 0"

R 0
The left side of equation (2.10) is a function of r only, while the right side
is a function of 0 only. Now, it is not hard to see that, in order for a
function of one variable to be equal to a function of another variable for all
values of these variables, the two functions must be constant functions
and in fact equal to the same constant. Hence (2.10) is equivalent to

r2R" + rR' 0"
R

or to the pair of equations,
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(2.11)

(2.12) 0" + a0 = 0
where is some real constant. We conclude that for a function u(r, 0) of
the form (2.9) to satisfy Laplace's equation, the functions R and 0 must
satisfy the ordinary differential equations (2.11) and (2.12). We must
therefore solve these equations.

Equation (2.11) is known as Euler's equation and has two linearly
independent solutions,

213 R
f1,logr if

( . ) ,L(r)
if 0.

Two linearly independent solutions of (2.12) are

(2.14)
0 0

if 0.

In (2.13) and (2.14) we use the subscript to indicate the dependence of
the solutions on When is negative, the functions in (2.13) and (2.14)
are complex valued. The real and imaginary parts of these functions form
pairs of real valued linearly independent solutions (see Problem 2.6).

It should not be assumed that, for every value
of and (2.14), the formula

(2.15) 0) =

defines a harmonic function in any domain fl ofR2. This is true only when
(2.15) yields a "well defined" function which is C2 in fl. For example, we
are frequently interested in finding harmonic functions in domains which
contain curves encircling the origin. Examples of such domains are the
whole R2, an open disc given by r <R and an open annulus given by R1 <
r <R2. If fl is such a domain and if F is any curve in fl encircling the
origin, it is clear that if we start at any point of F and travel once around F
returning to the starting point, the angular variable 0 changes by 2ir. This
means that in order for formula (2.15) to define a "single valued" function
in the function must be periodic with period i.e., it must
satisfy the condition

(2.16) + 21T) = for every 0.

It is left as an exercise to show that the functions given by (2.14),
satisfy the periodicity conditions (2.16) only if

\/7i—=n, n=O,1,2
and in fact, when a = 0, only the function 1 satisfies this condition. Thus,
if is a domain which contains curves encircling the origin, the only
angular functions that can be used in (2.15) to define harmonic functions
in fl are

(2.17) = cos nO, sin nO; n 1, 2

The corresponding radial functions are
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(218)
fl0
n = 1, 2,

and (2.15) yields the collection of functions,

Ii(2.19) u(r
clog r, cos nO, sin nO; n = 1, 2

If fl does not contain the origin ofR2 all functions in (2.19) are harmonic in
fl. If fl contains the origin, only the functions on the first line are
harmonic in fl.

Let us suppose now that fl is a domain of R2 that does not contain
curves encircling the origin. Then

(2.20) u(r, 0) = 0,

with 0 restricted to an appropriate range of values, defines a harmonic
function in fl. For example, if 11 is the right half plane x > 0, we may take
— IT/2 < 0 < ir/2. In rectangular coordinates the harmonic function (2.20)
is then

(2.21) u(x,y) = arctan
(-i--),

0 <x <00, —00 <y <00.

If fl is the upper half plane y > 0, we may take 0 < 0 < ir and in rectan-
gular coordinates the corresponding harmonic function is

IT
(2.22) —°°<x<°°,O<y<°°.

y

We now apply the method of separation of variables to obtain harmonic
functions in domains of R3. In this case we look for harmonic functions
u(r, 0, 4)) of the form

(2.23) u(r, 0, 4)) = R(r)Y(0, 4)).

Substituting (2.23) into Laplace's equation in spherical coordinates and
proceeding as above, we obtain the pair of equations

(2.24) (r2R')' — pR = 0

(2.25) A3Y + = 0

where is, again, a real constant. Two linearly independent solutions of
equation (2.24) are

(2.26) re',

where a1 and a2 are roots of the equation

a(a + 1) — = 0.

Equation (2.25) is a partial differential equation which is considerably
more difficult to solve. It is useful to consider (0, 4)) as the coordinates of
a point on the surface of the unit sphere S(0, 1) centered at the origin of R3.
Instead of trying to find all solutions of equation (2.25) it is frequently
sufficient to know only those solutions Y(0, 4) which are defined and C2



178 Introduction to Partial Differential Equations

on the whole of S(O, 1). Such solutions must be periodic in 0, with period
21T, and at the poles of the sphere (i.e., at the points where 4) = 0 and 4) =
IT) the solutions must approach limits independent of 0. It can be shown
(see Courant and Hilbert,' Vol. I, Chapter VII, §5) that equation (2.25)
has nontrivial solutions satisfying these conditions only when p. is equal
to one of the values

n=0,1,2
For each such p,, there are 2n + 1 linearly independent solutions of (2.25)
denoted by

k=1,2,...,2n+1.
These solutions are called the Laplace spherical harmonics. For p. =
the corresponding radial functions are

n 0, 1, 2

and the corresponding harmonic functions (2.23) are

ufl,k(r, 0, 4)) =
(2.27) (0, 4)); k = 1, 2 2n + 1; n = 0, 1, 2,

(0, 4); k = 1, 2, ..., 2n + 1; n = 0, 1, 2

If does not contain the origin ofR3 all functions in (2.27) are harmonic in
ft Otherwise only the functions on the first line are harmonic in fl.

The method of separation of variables may be used to find solutions of
partial differential equations other than Laplace's equation. It may be
used also with coordinate systems other than polar or spherical (see
Problem 2.7).

Problems

2.1. Derive the linearly independent solutions (2.6) of equation (2.5) and
the linearly independent solutions (2.8) of (2.7).

2.2. Derive the solutions (2.13) and (2.14) of equations (2.11) and (2.12).
2.3. Verify by direct substitution in Laplace's equation that the func-

tions (2.19) are harmonic in appropriate domains of R2.
2.4. Derive the separated equations (2.24) and (2.25).
2.5. Derive the solutions (2.26) of equation (2.24).
2.6. Find pairs of real valued linearly independent solutions of equations

(2.11) and (2.12) when is negative. [You may need the following
formulas: If z = x + iy where x and y are real, then ez = ex (cos y + i
siny). If r > 0, then

rz = log r]

2.7. (a) Use the method of separation of variables in rectangular coordi-
nates to obtain the following harmonic functions which are
bounded in the upper half plane y > 0 of R2,

(2.28) cos Ax, sin Ax; A 0.
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(b) By integration with respect to the parameter X, obtain the
functions

(2.29)
x Y

x2+y2' x2+y2
which are harmonic in the upper half plane y > 0 of R2.

3. Changes of Variables Yielding New Harmonic Functions.
Inversion with Respect to Circles and Spheres

In the previous section we obtained a collection of harmonic functions
by the method of separation of variables. By the principle of superposi-
tion, all linear combinations of these functions are also harmonic. In this
section we describe how to obtain new harmonic functions from known
ones by changing variables.

We first consider harmonic functions in R2. Let fl and fl' be two
domains in R2 and suppose that there is a one-to-one mapping from to
if given by

(3.1) x' = x'(x, y), y' = y'(x, y),

with the inverse mapping from to fl given by

(3.2) x = x(x', y'), y = y(x', y').

We assume that the functions x'(x, y) and y'(x, y) are in while the
functions x(x', y') and y(x', y') are in C2ffl'). Let u(x, y) be a given
function defined in and let u(x', y') be defined in by the formula

(3.3) u(x', y') = u(x(x', y'), y(x', y')).

The mapping (3.1), (3.2) may be thought of as a transformation of coordi-
nates or change of variables. In Chapter V we used transformation of
coordinates to reduce a second order equation to its canonical form. For
example, if u(x, y) satisfies an elliptic equation, then, in a neighborhood of
any point, we can introduce new coordinates x', y' such that in terms of
the new coordinates the function u(x', y') defined by (3.3) satisfies an
equation having the Laplacian as its principal part. In this section we are

Fig. 3.1
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interested in a different kind of question: Suppose that u(x, y) satisfies
Laplace's equation in CL For what coordinate transformations does u(x',
y') also satisfy Laplace's equation in with respect to the coordinates x',
y'? It is easy to show, using the chain rule of differentiation, that this is
the case for the following elementary transformations:

1. Translations:

XX+Xo, Y'Y+Yo
XX'Xo, Y=Y'Yo,

where (x0, Yo) is a fixed point of R2.
2. Rotations:

x' = (cos a)x + (sin a)y, y' = — (sin a)x + (cos a)y;

x = (cos a)x' —(sin a)y', y = (sin a)x' + (cos a)y',

where a is a fixed angle.
3. Reflections: Here we mean reflections about any straight line in R2.

For example,

= x, y' = —y; x = x', y = —y',

represents a reflection about the x-axis, while

x' = —x, y' = y; x = —x', y = y',

represents a reflection about the y-axis and

x'=y, y'=x; x=y', y=x',
represents a reflection about the line y = x. A reflection about any straight
line may be obtained as a combination of one of these reflections with a
translation and a rotation.

4. Similarity transformations:

1 1

x' = Ax, y' = Xy; x = x', y = y',

where A is a non-zero real constant.
Let us prove for example that if u(x, y) is harmonic in then, under a

rotation, u(x', y') is harmonic in if. We have

.9u .9u .9u.— =—cosa+--—slna,
ax 9x ay

92u t92u .32u . 92u— = — cos2a + 2—cos asin a + — sin2 a,
ax'2 t9x2 9x9y ay2

au au . au— = — (—sin a) + — cos a,
ay' ax

a2u a2u a2u . a2u— = — sin2 a — 2 sin a cos a + — cos2 a,
ay'2 ax2 axay ay2

and therefore
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92u 92u 92u a2u— + — = — + — = 0.
ax'2 ay'2 ax2 ay2

The proof for the other elementary transformations is even easier.
In order to obtain a new harmonic function from a known one by

making one of these transformations, we follow this procedure. Let u(x,
y) be harmonic in fl. First find the set fl',

= {(x', y') E R2: (x(x', y'), y(x', y')) E fl}.

Then find u(x', y') by replacing x with x(x', y') and y with y(x', y') in u(x,
y). Finally, drop the primes since they are no longer necessary. Of course,
if one knows what he is doing, he may not want to use primes at all.

Example 3.1. The function

log r = log [x2 + y2]"2

is harmonic in fl consisting of R2 except the origin. By a translation, the
function

log [(x' — x0)2 + (y' — yo)2]"2

is harmonic in fl' consisting of R2 except the point (x', y') = (x0, Yo). After
dropping the primes, the function

(3.4) log [(x — x0)2 + (y — Yo)2]112

is harmonic in R2 except the point (x0, yo). Sometimes we say that the
function (3.4) is harmonic in R2 with pole at (x0, Yo)• We may also want to
use the vector notation r = (x, y), r0 = (x0, Yo) and write (3.4) as

(3.5) log r — rol.

By a similarity transformation, the function

(3.6) log (Xr) log + (Ày)2]"2, A > 0

is also harmonic in R2 except the origin.

Example 3.2. For rotations it is natural to use polar coordinates. By a
rotation, the functions (2.19) become

(37) 1, cos n(O — a), sin n(O — a); n = 1, 2,

log r, cos n(O — a), sin n(O — a); n = 1, 2

The functions on the first line are harmonic in R2, while those on the
second line are harmonic in R2 except the origin.

The elementary transformations that we defined in R2 have obvious
analogues in R3 and in higher dimensional spaces. For example, the
function

(x2 + y2 + z2)"2

is harmonic in R3 except the origin, and, by translation, the function

[(x — x0)2 + (Y — yo)2 + (z — z0)2]112
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is harmonic in R3 except the point (x0, Yo, z0). In vector notation, r = (x, y,
z), r0 = (x0, Yo, z0), this function is written as

(3.8) —

and we say that this function is harmonic in R3 with pole at r0.
Except for translations, all the other elementary transformations in

are given by equations of the form

(3.9) Xj
=

= 1, ...

or, in matrix notation,

(3.10) x = Ax'

where

x1 x1'
x2 x2'

x =
• , =

xn xn'

and A = [au] is a n x n nonsingular matrix with inverse A' so that

(3.11) x' = A1x.

A transformation of the form (3.10), (3.11) is called a linear transforma-
tion of coordinates in and it is said to be given by the matrix A. We now
ask the following question: Which linear transformations of coordinates
preserve the harmonicity of a function? More precisely, which linear trans-
formations of coordinates have the property that if u(x1, ... , is any
function which is harmonic with respect to x1 then u(x1' , ... ,

is also harmonic with respect to x1' xv'? The answer to this question is
given in the following theorem, the proof of which is left as an exercise (see
Problem 3.1).

Theorem 3.1. A linear transformation of coordinates preserves the
harmonicity of every harmonic function if and only if it is given by a
matrix A of the form

(3.12) A = XB

where B is an orthogonal matrix and X is a positive constant.
Recall that a matrix B = [be] is said to be orthogonal if

Vbb _Ji if i=j
k=1

ulcjk j0 if

Recall also that orthogonal matrices define transformations which pre-
serve distances and hence are compositions of rotations and reflections.
Since (3.12) can be written as
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A = (X1)B

where us the unit matrix, and since XI defines a similarity transformation,
Theorem 3.1 asserts that the linear transformations which preserve har-
monicity are compositions of similarity transformations, rotations and
reflections.

We turn now to a discussion of another important and useful transforma-
tion which, for R2, is known as inversion with respect to a circle. Let S(O,
a) denote the boundary of the circle in R2 with center the origin and radius
a. In polar coordinates, the points (r, 0) and (r*, 0*) are said to be inverse
with respect to S(O, a) if

(3.13) rr* = a2, 0* 0.

Note that two points inverse with respect to S(O, a) lie on the same radial
line (see Fig. 3.2). Consider now the mapping which maps the point (r, 0)
to (r*, 0*), given by

(3.14) =

with the inverse mapping given by

(3.15) r =

The mapping (3.14) is defined for all points (r, 0) in R2 except the origin. It
maps points outside the circle S(O, a) to points inside S(O, a) and vice-
versa, while points that lie on the circle S(O, a) remain fixed. A domain fl
lying outside of S(O, a) is mapped to the domain inside of S(O, a). Now

0* = 0

0 =

(r*, 0*)

Fig. 3.2
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let fl be any domain in R2 that does not contain the origin and let u(r, 0) be
harmonic in fl. Then the function u(r*, 0*) obtained from u(r, 0) by
replacing r with a2/r* and 0 with 0*, is harmonic in The proof of this is
left as an exercise (see Problem 3.2).

Inversion with respect to a sphere in R3 is defined in a similar way. Let
S(0, a) be the surface of the sphere with center the origin and radius a. In
spherical coordinates, the points (r, 0, 4)) and (r*, 0*, 4)*) are said to be
inverse with respect to S(0, a) if

(3.16) rr* = a2, 0* = 0, çf,* = 4)

Now let fl be a domain in R3 not containing the origin and suppose that
the function u(r, 0, 4)) is harmonic in fl. Let (VK be the image of fl under
the inversion (3.16) and define the function u*(r*, 0*, 4)*) in fl* by the
formula

(3.17) u*(r*, 0*, 4)*) = - u (, 0*,

Then is harmonic in fl* with respect to the variables 0*, 4)*. The
proof is again left as an exercise (see Problem 3.3).

In dealing with inversions, it is often necessary to use vector notation.
If r and are the position vectors of two points inverse with respect to
S(0, a) (in either R2 or R3) then

(3.18) = !, ri = r, Ir*I = r*,

and hence

r a2
(3.19)

r* r r2

Similarly,

r
r r* r*2

In R2, if u(r) is harmonic in a domain fl, then

(3.21) u

is harmonic in In R3, if u(r) is harmonic in a domain fl, then

(3.22) u*(r*) = u

is harmonic in

Example 3.3. The function

(3.23) log r —

is harmonic in R2 with pole at r = r0. Inversion with respect to S(0, a)
yields



(3.24)

or, after dropping the star,
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log

r
r log — r — r0

r r a

This function is harmonic in R2 with poles at the origin and at r =
(a2/r02)r0. (The pole at the origin corresponds to the "pole at infinity" of
the function (3.23).) Therefore, the function

(3.25)
a r

log I — r — — r0
r a

is harmonic in R2 with pole at r = (a2/r02)r0. Note that the poles of (3.23)
and (3.25) are inverse with respect to S(O, a). If r0 < a, then the pole of
(3.25) is outside S(O, a) and (3.25) is harmonic inside S(O, a) (see Fig. 3.3).

Example 3.4. The function

(3.26)
I r —

is harmonic in R3 with pole at r = r0. Inversion with respect to S(O, a)
yields

F - ro

or, after dropping the star and simplifying,

Fig. 3.3

a'— r0
r0
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(3.27) a r
— r — — r0
r a

This function is harmonic in R3 with pole at r = (a2/r02)r0. The poles of
(3.26) and (3.27) are inverse with respect to S(O, a). If r0 <a, then the pole
of (3.27) is outside S(O, a) and hence (3.27) is harmonic inside S(O, a).

Problems

3.1. Prove Theorem 3.1. [First show that every linear transformation of
the form (3.12) preserves harmonicity. Then show that a linear
transformation which preserves the harmonicity of every harmonic
function must necessarily be of the form (3.12). For this you may
need the fact that the functions

x1xj, x? —xi; i i,j = 1, ... , n

are harmonic.]

3.2. Use the chain rule and the form of the Laplacian in polar coordinates
to prove that inversion with respect to a circle in R2 preserves the
harmonicity of a function.

3.3. Using the chain rule and the form of the Laplacian in spherical
coordinates, prove that the function defined by (3.17) is harmonic.

3.4. Show that applying inversion with respect to the unit circle on the
collection of harmonic functions (2.19) does not yield any new
harmonic functions.

3.5. Apply inversion with respect to the unit circle to the function log r in
R2. Apply inversion with respect to the unit sphere to the function hr
in R3.

4. Boundary Value Problems Associated with Laplace's
Equation

We have seen in Chapter VI that Laplace's equation appears in the
study of many physical phenomena. For example, if the function u
represents the steady state temperature distribution in a homogeneous
isotropic body, then, at every point interior to the body, u must satisfy
Laplace's equation. Of course, this fact alone is not sufficient to deter-
mine u since there are infinitely many solutions of Laplace's equation. If
we have additional information such as the temperature distribution on the
boundary of the body or the heat flux across the boundary, then u must
satisfy a condition on the boundary which is called a boundary condition.
The problem of determining the function u satisfying Laplace's equation in
the interior of the body and a boundary condition on its boundary is called
a boundary value problem. In this section we state the three basic boun-
dary value problems associated with Laplace's equation.

The Dirichlet Problem or First Boundary Value Problem
Let be a bounded domain in with smooth boundary an, and let f

be a given function which is defined and continuous on 3fl. Find a
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function u which is defined and continuous in the closure of such that
u is harmonic in fl and u is equal to f on More explicitly, find a
function u which is in and in and satisfies

(4.1)

(4.2) u(x) = fix), x E

Equation (4.2) is called the boundary condition of the problem and the
given function f is referred to as the boundary data.

In this definition of the Dirichlet problem, the conditions that we have
imposed on fl, and fare too stringent. We did this in order to make the
discussion, at least initially, as simple as possible. Later on we will
consider problems in which the domain may be unbounded, the bound-
ary may have corners and the boundary data function I may have
discontinuities. When is the exterior of a bounded region, the problem
is called the exterior Dirichlet problem.

It is always useful to keep in mind a physical example. Let the function
u describe the steady state temperature distribution in a homogeneous
isotropic body the interior of which is the domain and let the given
function f describe the temperature distribution on the surface of the
body. In order to find the temperature distribution u we must solve the
Dirichiet problem (4.1), (4.2).

Example 4.1. Solve the Dirichiet problem

in

u(x)=c, xEThQ

where fl is a bounded domain in and c is a given constant.
In this problem fix) = c. It is obvious that the constant function u(x) = c

is a solution to this problem. We will see later on in this chapter that this is

Fig. 4.1. The Dirichiet problem

u = f on

= 0 in
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the only solution to this problem. In terms of our physical example, this
means that if the surface of a finite body is kept at a constant temperature
c, the steady state temperature at every point inside the body is also equal
to c.

Example 4.2. Let fl be the unit disk x2 + y2 < 1 in R2. Solve the
Dirichlet problem

in fl

u(1,O)=cosO,
Here, it is convenient to use polar coordinates in the boundary condition.
It is easy to check that the function given by

u(x, y) = x

or, in polar coordinates,

u(r, 0) = r cos 0

is a solution to the problem. Again, as we will see, this is the only
solution.

The Neumann Problem or Second Boundary Value Problem

Let be a bounded domain in with smooth boundary an, and let n
= n(x) be the outward unit normal vector to at the point x. Let f be a
given function defined and continuous on an. Find a function u defined
and continuous in such that u is harmonic in and such that the outer
normal derivative au/an on is equal to 1' i.e.

(4.3) = 0, in

(4.4)
au(x)— = fix),

an
x E

= 0 in 3u— =

Fig. 4.2. The Neumann problem
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A physical example associated with the Neumann problem is this: Find
the steady state temperature distribution in a homogeneous isotropic
body if the law of heat flux across its surface is known. If for example the
surface of the body is insulated, the function fin the Neumann boundary
condition (4.4) is zero.

Example 4.3. Solve the Neumann problem

in

xE9fl
an

where fl is a bounded domain in RlZ. It is obvious that all constant
functions,

u(x) = c,

where c is any constant, are solutions of the problem. Thus, this problem
has infinitely many solutions. We will show later on that the constant
functions are the only solutions. In terms of our physical example, this
means that the steady state temperature distribution inside a body with
insulated surface is constant. This constant depends on the amount of
heat trapped inside the body. In order to determine this constant tempera-
ture it is enough to know the temperature of the body at a single point.

A combination of the Dirichiet and Neumann boundary conditions also
appears in problems of heat conduction and leads to the following bound-
ary value problem.

The Mixed Problem or Third Boundary Value Problem
Let fl be a bounded domain in RlZ with smooth boundary and let n =

n(x) be the outward unit normal vector to 3fl at x. Let a, f3 andI be given
functions defined and continuous on an. Find a function u defined and
continuous in such that

(4.5) = 0, in

(4.6) a(x) + = fix), x E alL

The three main goals of this chapter are the following:
1. To determine the conditions under which a boundary value problem

is well-posed, i.e., the problem has a unique solution which depends con-
tinuously on the boundary data.

2. To describe methods for finding the solution of a well-posed prob-
lem.

3. To determine general properties of the solution.
It should be emphasized that not every seemingly reasonable problem is

well-posed. We will see for example that the Neumann problem (4.3),
(4.4) does not have any solution unless the function f is such that its in-
tegral over Mi is equal to zero. Even when this necessary condition for
the existence of a solution is satisfied, the problem may have infinitely
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+ =

many solutions as is the case with the problem of Example 4.3. As another
example, the exterior Dirichlet problem in two independent variables
has infinitely many solutions unless we impose the condition that the solu-
tion must be bounded.

Once we know that a problem is well-posed we may try to find its solu-
tion. Except when the problem is particularly simple, we cannot expect to
find a simple formula for the solution. However, we can always find nu-
merical approximations to the solution, perhaps with the aid of a com-
puter.

In the study of the boundary value problems associated with Laplace's
equation the linearity of the Laplacian operator plays a very important
role. Suppose for example that u1 is a solution of the Dirichlet problem

in u=f1 on
and u2 is a solution of the Dirichiet problem

= 0 in U =12 on

Then for any two constants c1 and c2, the linear combination u = c1u1 +
c2u2 is a solution of the Dirichiet problem

= 0 in fl; u = c1f1 + c2f2 on

In particular, if u1 and u2 are solutions of the same Dirichlet problem
(4.1), (4.2) then the difference u = u1 — u2 is a solution of the Dirichiet
problem with zero boundary data,

(4.7) = 0 in fl; u = 0 on an.
Thus, in order to prove uniqueness of solution of the Dirichlet problem

= 0 in

Fig. 4.3. The mixed problem
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(4.1), (4.2) it is enough to show that the only solution to (4.7) is the func-
tion which is identically zero.

5. A Representation Theorem. The Mean Value Property and
the Maximum Principle for Harmonic Functions

In this section we prove a representation theorem which gives the
value of a C2 function at a point in terms of certain volume and surface
integrals involving the function, its derivatives and the Laplacian of the
function. We then apply this theorem to show that a harmonic function
has the mean value property: the value of a harmonic function at a point is
equal to the average of its values over any sphere centered at that point.
Finally, using the mean value property we show that a harmonic function
satisfies the maximum principle: if u is harmonic in a bounded domain
and continuous in then u must attain its maximum and minimum values
on the boundary an, and only on unless u is constant in ft

Theorem 5.1. (Representation theorem, n = 3.) Let be a bounded
normal domain in R3 and let n be the unit exterior normal to the boundary
an0 of fl0. Let u be any function in Then the value of u at any point
r0 E no is given by the formula

au(r) a 1 1
u(ro) =

— J L — — — u(r) —
— j du

(5.1)
41T O1io I r r0 r r0

1 f V2u(r)——i dv.
r —

Proof. The proof is based on an application of the second Green's
identity

(5.2) J (uV2w — wV2u)dv
= f (u — w do,

an an

which was derived in Section 1, Chapter VI, using the divergence theorem.
Identity (5.2) is certainly valid for any two functions u and w which are in
C2(fl0). We want to apply (5.2) with u the function of the theorem,
and w the harmonic function

(5.3) w(r) = 1

Ir —

with pole at r0. Since w has a singularity at r0 and r0 is a point of the
identity (5.2) is not applicable. In order to avoid this difficulty we consider
a new domain obtained from by removing the closed ball B(r0, €) of
center r0 and radius €,

(5.4) = — €).

Here E is chosen to be any positive number such that E) C (see
Fig. 5.1).

Now, u and w are in and (5.2), with replaced by is
applicable. Moreover, since w is harmonic in and since = U



f dv = I
1 1

r — rot L an r — r Ir — r 01 an i

I dv
Ir — rot

V2u(r) 1 V2u(r)
limi— I dvl=— dv.

L tr — rot i In0 Ir — rot
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n

Fig. 5.1

S(r0, €), where S(r0, €) is the surface of the sphere of center r0 and radius €,
we have

(5.5)
r F a 1 1 au(r)1

+ I lu(r)— — — —ldo.
JS(ro,€)L an Ir — rot Ir —rot an J

Equation (5.5) is valid for every sufficiently small 0. We will show that
formula (5.1) is obtained from (5.5) by letting tend to 0. Since the integral

is convergent (see Problem 5.1), it is clear that

The first integral on the right of (5.5) does not depend on €. Hence, the
limit as 0 of the second integral on the right of (5.5) exists, and in
order to obtain (5.1) it remains to show that

I I a 1 1 au(r)1
(5.6) hm I I u(r) — — — = 4lTu(r0).

JSr0,€ L an tr — rot tr — rot an j

In order to prove (5.6) we note that for points r on S(r0, €),

1 1 a 1 1and —
r — rot an tr — rot €2
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(why?). Hence

I I a 1 1 i3u(r)]
I iu(r)— — —idu

JS(ro,E) L on Ir — rof Ir — rol On J

f f1 10u(r)]
= i

J

= f du
+ f [u(r) - u(ro)] - ! du

On

= + [u(r) - u(ro)]
On

and (5.6) will follow if we show that the last integral tends to 0 as 0.
We have

I Ii 1 Ou(r)1
I [u(r) — u(r0)] — — — du

JS(ro,€) 1€ On j

1 1 1 1 Ou(r)
-j I u(r) — u(r0) du + — I — dcr

On

max u(r) — u(r0) + 4ir€ max grad
reCi0

The first term on the right tends to 0 as 0 since u is continuous in flo.
The second term also tends to 0 as —÷0, since the maximum of Igrad in

is finite. The proof of the theorem is now complete.

Theorem 5.2. (Representation theorem, n = 2.) Let (lO be a bounded
normal domain in R2 and let n be the unit exterior normal to the boundary
9(1o of (10. Let u be any function in Then the value of u at any point
r0 E (10 is given by the formula

1 I 1 1 Ou(r) 0 1 1
u(r0) =— I Ilog—--—---—— — u(r)—log I ds

21T Jono L Ir — rol an On Ir — r
(5.7) 0

—

j' V2u(r)log
1

21T no Ir—rol

where ds is the element of length on O(1o.

The proof of Theorem 5.2 is very similar to the proof of Theorem 5.1
and is left for the problems (see Problem 5.2).

Representation theorems for n > 3 can be obtained in the same way as
for n = 2 and n = 3. We use the second Green's identity with

w(r)=
1

r —

which is a harmonic function in with pole at r0.
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An immediate application of the representation theorem shows that a
harmonic function has the mean value property.

Definition 5.1. A function u(r) defined in a domain ci of R" is said to
have the mean value property in ci, if the value of u at any point r0 of ci is
equal to the mean value (average) of the values of u over any sphere S(r0,

which, together with its interior B(r0, belongs to ci, i.e.

(5.8) u(r0) = 1

f u(r)du
JS(ro,8)

for every ö > 0 such that B(r0, C ci.
In (5.8), IS(ro, denotes the area of the sphere S(r0, Thus, forn = 2,

IS(ro, = and for n = IS(ro, =

Theorem 5.3. (Mean value theorem.) Let u be a harmonic function in a
domain ci of Then u has the mean value property in ci.

Proof. We give the proof only forn = 3. In the Representation Theorem
5.1, let ci0 = B(r0, Since B(r0, C ci and since u is harmonic in ci, it
follows that u E C2(ci0) and the conditions of the theorem are satisfied.
Formula (5.1) becomes

1 1 1 1 Ou(r) 8 1 1
u(ro) =

— J L —
— u(r) — ______jdo-.

41T S(ro,8) Ir rol an On Ir rol

1 1 3 1 1
Now, on S(r0, = — and — = —

Ir—rol OnIr—rol

(why?). Hence

1 1 1 1
u(r0) —i I u(r)du + — I — (r)du.

JS(ro,8) JS(ro,8) On

By the Divergence Theorem, the second integral is zero since

f du = I Vundu = I V2udv = 0.
JS(ro,8) On Js(r0jj) JBr0JJ)

The mean value property of harmonic functions yields a very important
result known as the maximum principle.

Theorem 5.4. (Maximum principle.) Let Q be a bounded domain in R'1
and suppose that u is defined and continuous in ci and harmonic in ci.
Then u attains its maximum and minimum values on the boundary Oci of
ci. Moreover, if u is not constant in ci, then u attains its maximum and
minimum values only on Oci.

We know that if u is continuous in the bounded closed set ci, then u
must attain its maximum and minimum values at points of ci. The maxi-
mum principle asserts that if, in addition, u is harmonic in ci, then u must
attain its maximum and minimum values on oci, and only on Oci unless u is
constant in ci. Note carefully that this assertion is eqivalent to saying that
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if u attains its maximum or minimum values ata point of ci (i.e., at an
interior point of ci) then u must be constant in ci.

Proof of Theorem 5.4. We prove only the "maximum" part of the
theorem since the proof for the "minimum" part is the same.

Let u (x) = M and suppose that u (x°) = M where x° is a point of
ci. We must show that u(x) = M for every x E ci. By continuity, this
would imply that u(x) = M for every x E

We first prove the following assertion A: if u(i) = M at some point I E
fl, then u(x) = M for every x in the largest ball B(i, centered at and
contained in ci (see Fig. 5.2). This assertion follows from the mean value
property for harmonic functions: if < u(i) must be equal to the
average of the values of u over the sphere S(i, 6). Since u is continuous
and since the values of u on S(i, must be less than or equal toM =
it follows that the values of u on S(I, must be equal to M (see Problem
5.5). Since this is true for every between 0 and the proof of assertion A
is complete.

Now let y be any point of ci. We must show that u(y) = M. Since ci is
connected there is a polygonal path C connecting x° with y and lying
entirely in 11 (see Fig. 5.3). Since the minimum distance of C from aci is
positive, it is possible to find a finite number of points

xo, xl, xZ, ... , = y
on C which can be used as centers of balls B(x1, having the following
two properties:

(ii) x1 E i = 1, 2, ... , n.

Now, by assertion A, u(x) = M for every x E B(x°, Hence u(x') = M.
Again by assertion A, u(x) = M for every x E B(x', Hence u(xz) = M.

Fig. 5.2
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Continuing in this way, we conclude after
u(y) = M. The proof is complete.

Problems

5.1. Show that if u E with a bounded domain in R3, then the
integral

f V2u(r)
dv

r — r0

is convergent.
5.2. Prove the two-dimensional representation theorem (Theorem 5.2).
5.3. Answer the "why?" in the proofs of Theorem 5.1 and 5.3.
5.4. Prove the mean value theorem for harmonic functions (Theorem 5.3)

forn = 2.
5.5 Prove that if u has the mean value property in a domain 11 and if u

assumes its maximum value M at a point r0 E 11, then u = M on every
sphere S(r0, for which B(r0, C ci.
[Hint: Suppose that for some r1 E S0 = S(r0, u(r1) <M. Then u(r)
< M for every r in a subset S1 of S0 with positive area.]

5.6. Suppose that the function u has the mean value property in a domain
11 of R3. Show that u also has the "volume" mean value property:

u(ro) = L f u(r)dv
4 B(ro,8)

ITO

for every ball B(r0, such that 6) C 11. -
5.7. Let ci0 be a bounded normal domain in R3 and let u be in C1(fl0) and

harmonic in ci0. Show that for any point r0 E flu,

1ff 1 3u(r) 1 1
u(r0) = — I I — — u(r) — I da.

4lTJonLIrroI an anlr—r01i

Fig. 5.3

a finite number of steps that
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[Make sure to check that, if u is harmonic in then in the
representation theorem it is only necessary to assume that u E
C'((10).]

6. The WeUPosedness of the Dirichiet Problem
In this section we discuss the well-posedness of the Dirichiet problem:

Find a function u in C2(fl) fl C°(fl) such that

(6.1) V2u = 0, in 11,

(6.2) u =f, on 311,

where 11 is a bounded domain in RlZ and f is a given function which is
defined and continuous on 911. In order to prove that this problem is well
posed we must show that (i) there exists a solution, (ii) the solution is
unique, and (iii) the solution depends continuously on the boundary data

The uniqueness and the continuous dependence of the solution on the
boundary data follow immediately from the maximum principle.

Theorem 6.1. (Uniqueness.) The Dirichlet problem (6.1), (6.2) has at
most one solution.

Proof. We must show that any two solutions of the problem must be
identical. Let u1 and u2 be any two solutions and consider their difference
ü = u1 — u2. Then ü is continuous in ci, harmonic in fl and zero on öfl. By
the maximum principle ü must attain its maximum and minimum values
on oh. Hence i 0 in ci and consequently u1 u2 in 11.

Theorem 6.2. (Continuous dependence on data.) Let f' and 12 be two
functions defined and continuous on 011. Let u1 be the solution of the
Dirichlet problem (6.1), (6.2) with f = 11 and let u2 be the solution of the
problem with f = 12. For any 0, if

(6.3) Ifi(x) —f2(x) 1< €, for all xE 011,
then

(6.4)
I

u1(x) — u2(x) I < €, for all x E fl.
Proof. Let ü = u1 — u2. Then ü is harmonic in 11, continuous in hi and,

by (6.3),

I
ü(x)

I

<€, for all x E 011.

By the maximum principle,

In(x)I<€,,forall xEfl,
and (6.4) follows.

The question of existence of solution to the Dirichiet problem is a much
more difficult one and the answer depends on the geometry of the domain
ci. Before stating conditions on the domain ci which guarantee the exist-
ence of a solution, we will discuss briefly an example, due to H. Le-
besgue, of a Dirichlet problem for a special domain which has no solution.
The example illustrates how existence of a solution may fail.
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Imagine a ball in R3 with a deformable surface. At a point on the
surface, push in a sharp spike and assume that near the tip of the spike the
surface of the deformed ball takes the form of a "conical" surface
obtained by rotating the curve

forx>O
(0, forx=O

about the x-axis. The interior of the resulting deformed ball is the domain
11 (see Fig. 6.1). Now, it is beyond the scope of this book to present a
detailed proof of Lebesgue's result. Instead, we will try to make his result
plausible by considering a heat conduction problem for a homogeneous
isotropic body with interior the domain 11. Suppose that the temperature
distribution on (3(1 is given by the continuous functionf which is equal to
zero at points of the spike, while f is equal to a large positive constant
temperature T0 at points away from the spike. Then the steady state
temperature u(x) should be close to T0 for alix in (1, but it is impossible for
u(x) to approach the temperature zero as x approaches the spike from
within 11. The spike does not have enough surface area to keep the
temperature at surrounding points close to zero. For this Dirichlet
lem, existence of a solution fails because the solution cannot possibly be
continuous in the closure fl of 11.

We describe now a geometrical condition which rules out the occur-
rence of very sharp spikes such as the one in Lebesgue's example. This
condition guarantees the existence of a solution to the Dirichlet problem.

Consider the "conical" surfaces obtained by rotating the curves

Fig. 6.1

yXk,
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about the x-axis. The surfaces bound spike-shaped volumes with the
sharpness of the spikes increasing with k. These volumes will be called
probes. The class of domains fl in R3 that we wish to consider satisfy the
following condition:

Condition P. Each point x E 311 can be touched by the tip of some
probe in such a manner that all points of the probe which lie at a distance
not greater than some positive number p from the tip of the probe, lie
outside of 11 (see Fig. 6.2).

Theorem 6.3. (Existence, n = 3.) If ci is a bounded domain in R3
satisfying condition P,then the Dirichlet problem always has a solution.

The ideas involved in the statement of this existence theorem can be
extended to domains in RlZ with n > 3. For n = 2, the probes in condition
P may be replaced by straight line segments.

There are several proofs of existence theorems for the Dirichlet prob-
lem, all of which are difficult and cannot be presented here. A historical
account of these proofs can be found in the book of Kellogg.2 A proof due
to Poincaré is presented in the book of Petrovskii.3 The books of Kellogg
and Petrovskii also describe a method using integral equations for con-
structing the solution. Lebesgue's example discussed above appears in
the book of Kellogg.

7. Solution of the Dirichlet Problem for the Unit Disc. Fourier
Series and Poisson's Integral

In this section we solve the Dirichiet problem for the unit ball in R2,
commonly known as the unit disc. It is convenient to use polar coordi-
nates for the problem. Let

11 = B(O,1) ={(r,O) ER2: 0 � r< 1, — IT � 0 � IT}.

Fig. 6.2
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The problem is to find the function u(r,O) in C2(cl) fl such that

V2u(r,O)=O; O�r<1,
(7.2) u(l,O) = fib); — IT � 0 � IT,

wheref is a given function in C°(afl).
We will attempt to construct the solution of problem (7. 1)-(7.2) by

superposition of the harmonic functions

(7.3) cos nO, r" sin nO; n = 0,1,2,

which were obtained in Section 2 by the method of separation of varia-
bles. Each of the functions in (7.3) is harmonic in R2 and, in particular,
each satisfies (7.1). We proceed by assuming that the desired solution can
be expressed in the form

(7.4) u(r, 0) = + cos nO + sin nO).

(The factor 1/2 in the constant term A0/2 is used for convenience later
on.) The problem now is to determine the coefficients n = 0, 1, 2,

so that the series in (7.4) converges and defines a function u(r, 0) in
C2(f1) fl C°(fl) which satisfies (7.1)-(7.2).

We first note that if the coefficients n = 0, 1, 2, ... in (7.4) are
bounded, i.e., if there is a constant M> 0 such that

(7.5) for n=O,1,2,...,
then the series in (7.4) converges to a harmonic function in 11 (see
Problem 7.1). The actual values of the coefficients are determined from
the boundary condition (7.2). Indeed, in order for (7.4) to satisfy (7.2), the
coefficients must be chosen so that

(7.6)

Let us first consider the special case in which fib) is a trigonometric
polynomial of the form

f(O) = + cos nO + sin nO).

Then, clearly, the coefficients in (7.4) must be chosen to be

for n=0,1 N;
for n=N+1,N+2,...,

and the solution of(7.1), (7.2) is

u(r, 0) = + cos nO + sin nO).

For example if

flO) —1 +2cosO+Ssin3O,
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the solution of(7.1), (7.2) is

u(r, 0) = — 1 + 2 r cos 0 + 5 sin 30.

This special case suggests that in the general case in which flO) is an
arbitrary given function, we should try to express f(0) as a series of the
trigonometric functions cos nO, sin nO; n = 0, 1, 2 More precisely, we
should look for coefficients n = 0, 1, 2, ... , such that the
trigonometric series

(7.7) + cos nO + sin nO)

converges to f(O) for — IT � 0 � IT, allowing us to write

(7.8) f(0) = + cos nO + sin nO).

It turns out that iff(0) satisfies certain conditions, then the representation
(7.8)is possible. Suppose now thatf(0) can be expressed in the form (7.8).
Then obviously the coefficients in (7.4) must be chosen to be

= = n = 0, 1, 2,

and

(7.9) u(r, 0) = + cos nO + sin nO)

will be, hopefully, the desired solution of (7.1), (7.2).
The problem of representing a given function by a trigonometric series

has a long history. It was first considered by Daniel Bernoulli (1700—1782)
in his attempt to find solutions of the wave equation. In 1824, Fourier
proved that the representation (7.8) is valid for functions f satisfying
certain conditions. For this reason the trigonometric series (7.7) is known
as a Fourier series.

Fourier series play an important role in the study of partial differential
equations. In the next section we will digress from our study of Laplace's
equation in order to present an introduction to some of the basic results of
the theory of Fourier series and give the student a working knowledge of
the subject. Meanwhile, we will use the theorems of the next section to
complete our study of the solution of the Dirichiet problem for the unit
disc. At this point the student may wish to study Section 8 before
continuing with the present section.

We observe first that the assumption that f is in means not only
thatf(0) is continuous on the interval [—IT, IT] but also that f(—IT) = f(IT).
(Remember that öfl = {(r, 0) E R2: r = 1, — IT � 0 � ir} is the boundary of
the unit circle, and if f(—IT) then! would have a jump discontinuity
at the point (1, ±IT) of öfl, contrary to our assumption that f is continous on
all.) Let us now make the additional assumption that the derivative f' off
is sectionally continuous on the interval [—IT, IT]. This means that f'(O) is
continuous in this interval except possibly at a finite number of points
where f'(O) may have finite jumps; see Definition 8.1.
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According to Theorem 8.2, if n = 0, 1, 2, ... , are the Fourier
coefficients off given by

(7.10) =! j f(O) cos nO do, = f flO) sin nO do,

the Fourier series (7.7) converges (uniformly) tof(O) for — IT � 0 � IT and
the representation (7.8) is valid. We now claim that, in this case, (7.9) is
actually the solution of the Dirichlet problem (7.1), (7.2). To check this we
note first that the coefficients given by (7.10) are bounded by 2 max I fI
and therefore the series in (7.9) converges to a harmonic function in 11.
Hence u(r, 0) given by (7.9) is in C2(ci) and satisfies (7.1). Since the series
in (7.8) converges uniformly to f(O) for —IT � 0 � IT, the series in (7.9)
converges uniformly in ci. This follows from the fact that each term in
(7.9) is obtained from the corresponding term in (7.8) by multiplying by r",
and � 1 in 11. Hence, u(r, 0) given by (7.9) must be continuous in ci
since it is the sum of a uniformly convergent series of continuous functions
in 11. Finally, setting r = 1 in (7.9) and remembering (7.8), we see that the
boundary condition (7.2) is satisfied. We restate our result in the form of a
theorem.

Theorem 7.1. Suppose thatfE C°(aci) andf' is sectionally continuous
in the interval [—IT, IT]. Then the solution u(r, 0) of the Dirichiet problem
(7.1), (7.2) is given by the series (7.9) with coefficients being the Fourier
coefficients off given by (7.10).

Example 7.1. Solve the Dirichiet problem

(711) V2u(r,O)=O;

u(1,0)=IOI,
In this example, f(O) = 0 is continuous on öfl and

—1 for

1 for 0<O<ir
is sectionally continuous on [—IT, IT]. Therefore Theorem 7.1 is applica-
ble. The Fourier coefficients off are computed in Example 8.2 of the next
section, where it is shown that f(O) has the Fourier series representation
(see equation (8.26))

IT

2 n=iIT fl2

Therefore, the solution of problem (7.11) is

IT
(7.12) u(r, 0) = — + — / 2

rlz cos nO.
2 fl

Let us now drop the additional assumption that f'(O) is sectionally
continuous. Then the series in (7.9) still converges to a harmonic function
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in since its coefficients, which are the Fourier coefficients offgiven by
(7.10), are still bounded by 2 max I fI (again by Problem 7.1). However,
the series in (7.9) may not converge on an because r = 1 on an and the
series is then the Fourier series of the function f(O) which is merely
assumed to be continuous. It is well known that there are continuous
functions whose Fourier series do not converge. To circumvent this diffi-
culty we define the function u(r, 0) to be given by the series (7.9) when
r < 1 and to be equal tof(0) when r = 1. Then it can be shown that u(r, 0)
is continuous in fl and hence is the desired solution of the problem. We
state this result in the following theorem.

Theorem 7.2. Suppose that f is in C°(afl). Then the solution u(r, 0) of
the Dirichlet problem (7.1), (7.2) is given by

+ r < 1,
(7.13) u(r, 0) =

2

f(0), for r = 1,

with the coefficients being the Fourier coefficients offgiven by (7.10).

We will now derive an alternate form of (7.9) which will express the
solution of the Dirichiet problem (7.1), (7.2) as an integral rather than a
series. Substitution of the formulas for the Fourier coefficients (see
Problem 8.5) into (7.9) yields, for r < 1,

u(r, 0) = £ flçb)dçb + cos nçb cos nO dçb

1 1 +

f(4) sin n4 sin nO d4]

= — f(çb)dçb + — f(çb) cos n(O -
lTn=i

1 r 1

=—I

The change in the order of integration and summation used in the last
equality above is justified since the series in brackets converges uniformly
for r � r1 with r1 any number < 1. If we set

(7.14) P(r, = (1 + 2 r'1 cos

we have

(7.15) u(r, 0) = 0 -
The function P(r, is called the Poisson kernel. The sum of the series in
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(7.14) defining P(r, can be found in the following manner. Let z denote
the complex variable in polar form,

z = r (cos + i sin z = r.
Then

= = (cos + i sin ne)
and

IzI<1

where Re w denotes the real part of the complex number w. Now

IzI<11—z
so that

1+2 IzI<1.1—z
Hence

1 1+z 1

(7.16) r<1,
273- 1—z 273- 1—re'

and a short calculation (see Problem 7.2) yields

(7.17) P(r, =
— T

, r < 1.
273-1 +r

Now, substitution of (7.17) into (7.15) yields the following integral for-
mula for u(r, 0) when r < 1,

1 (1 — r2)f(çb)
(7.18) u(r, 0) = — dçb.

1+r2—2rcos(0—4)
The integral in (7.18) is called Poisson's integral.

By direct computation, it can be shown that Poisson's integral defines a
harmonic function in fl (r < 1) under the assumption that f is in C°(afl).
Moreover, as the point (r, 0) with r < 1 tends to any boundary point (1,
On), Poisson's integral tends to the value fib0). (Detailed proofs of these
assertions for the three-dimensional case will be given in Section 9.)
Therefore, the function u(r, 0) defined to be given by Poisson's integral
when r < 1, and equal tof(0) when r = 1, is continuous in fl and hence is
the desired solution of the problem.

Theorem 7.3. Suppose that f is in C°(afl). Then the solution u(r, 0) of
the Dirichlet problem (7.1), (7.2) is given by

1 (1 — r2)f(4)
— 2

—d4, for r<1
(7.19) u(r, 0) = 273- 1 + r — 2r cos (0 — 4)

fib), for r = 1.
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The solution of the Dirichlet problem for a circle of radius a centered at
the origin can be easily obtained from the solution of the problem for the
unit circle using the fact, proved in Section 3, that under a similarity
transformation of coordinates a harmonic function remains harmonic.
Indeed, replacing r with na, the series solution for B(O, 1) yields the
series solution for B(0, a),

(7.20) u(r, 0) = + cos nO + sin nO),
2 a

while the Poisson integral solution for B(O, 1) yields the Poisson integral
solution for B(O, a),

1 (a2 — r2)f(4))
(7.21) u(r, 0) = — I 2

d4)
2ir j0 a + r2 — 2arcos(0 —4))

Problems

7.1. Show that if the coefficients in (7.4) are bounded, i.e., if they
satisfy condition (7.5), then the series in (7.4) converges to a har-
monic function in fl = B(O, 1). [Hint: For r � r1 < 1, each term of the
series in (7.4) is dominated by the corresponding term of the series

(7.22) 2M(1 + r1 + + ... ).

The geometric series (7.22) converges to 2M(1 — r1)1 for r1 < 1. Use
the Weierstrass M-test to show that the series in (7.4) converges

uniformly in each closed ball B(O, r1) with r1 < 1. Conclude that the

series in (7.4) converges to a continuous function u(r, 0) in fl. Then

consider the series obtained by term-by-term differentiation of both
of the series (7.4) and (7.22).]

7.2. Derive (7.17) from (7.16).

7.3. Derive (7.20) and (7.21).

7.4. Use (7.20) to show that the value at the origin of the solution of the

Dirichlet problem for B(O, a) is equal to the average of its values on

the boundary S(O, a) of B(O, a). Do the same using (7.21).

7.5. (a) Consider the Dirichlet problem in an annulus fl in R2,

fl={(r,0)ER2; O<a<r<1,
This problem requires one to find a function u(r, 0) in C2(fl) fl
C°(fl) such that

V2u(r,0)=O, a<r<1,
u(1,O)=f(O),
u(a,O)=g(O),

Assume the solution can be represented as a superposition of the
functions 1, log r, r'1 cos nO, r'1 sin nO, cos nO, sin nO, n = 1,

2, ... , all of which are harmonic in fl, and discuss the determina-
tion of the coefficients. Assume thatf and g are C' functions.

(b) Solve the Dirichlet problem
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V2u(r,O)=O,

u(1,0)=sin0,

7.6. Compute the values to two decimal places of the solution (7.12) of
problem (7.11) at the following points (r,0):

(a) (0, 0), (b) (0.1, 0), (c) (0.5, 0), (d) (0.9, 0).

How many terms of the series do you need to use in each case? What
is the value of the solution along the diameter 0 = ± 73-12?

7.7. (Study Section 8 first.) Find the series solution of the Dirichlet
problem (7.1), (7.2) if
(a)f(0) = 02,

(b) f(0) = sin 01, —ir 0

(c)f(0) = I0I(ir — 01), <0 <ir

d
0(ir—0) for

for

7.8. (Study Section 8 first.) Let f(0) be sectionally continuous and have a
sectionally continuous derivative on the interval [—iT, 73-]. If necessary
redefine fat points of discontinuity to be equal to the average of its

limits from right and left. Also, let f(±73-) = — [J(73-—O) + fl—ir+O)].

Show that (7.9), with coefficients being the Fourier coefficients off,
is a solution of the Dirichlet problem (7.1), (7.2) except that this
solution is not necessarily continuous on the boundary (r = 1) of
Find this solution of(7.1), (7.2)if

_fo for 1T<O<O
for O<0<ir.

8. Introduction to Fourier Series
Letfbe a function of one variable x defined on the interval [—ir,ir]. We

are interested in the problem of representingf by means of a trigonometric
series in the form

(8.1) fix) = + cos nx + sin nx).

We would like to have answers to the following three questions: (a) For
what functionsf is the representation (8.1) possible? (b) In what sense is
the representation valid; i.e., how does the series converge tof(x)? (c)
How are the coefficients of the series determined from 1(x)?

We can answer the last question first, assuming that the representation
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(8.1) is valid in the sense that the series converges uniformly tof(x) on the
interval [—ir, ir]. We need the following formulas which can be easily
proved by using elementary trigonometric identities (see Problem 8.1).
For all positive integers n and k,

j'IT

J
cos nxdx

= J
sin nxdx = 0,

1T 1T

(8.2) f cos nx sin kxdx = 0,

t7T 11T

J
cos nx cos kxdx

= J
sin nx sin kxdx = 0, if k

7T —IT

and

(8.3) j cos2 nxdx
= j sin2 nxdx = ir, f 1 dx = 2ir.

In order to determine the coefficient a,, with k � 1, we multiply both sides
of (8.1) by cos kx and integrate over [—73-, IT]. After interchanging the
order of summation and integration (which is allowed under our assump-
tion of uniform convergence of the series) we obtain

Jf(x) cos kxdx = 2 L cos kxdx + L. cos nx cos kxdx

+ sin nx cos kxdx.

According to formulas (8.2), all except one of the terms on the right side
of this equation are zero, so that

(8.4) Jf(x) cos kxdx = ak f cos2 kxdx.

Using now (8.3) we obtain the formula for ak, k � 1,

(8.5) ak = — fix) cos kxdx.
13-

If k = 0, the above procedure leads to

(8.6) J J(x)dx = J dx
in place of (8.4) and therefore

(8.7) ao ! JJ(x)dx.

(The factor 1/2 was used in the constant term a0 of (8.1) in order to make
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formula (8.5) valid for all k including k = 0.) To obtain the formula for bk,
k � 1, we multiply both sides of (8.1) by sin kx and proceed as before to find

(8.8) bk
=

sin kxdx.

We have shown so far that if the representation (8.1) is valid in the
sense that the series converges uniformly to f(x) on the interval [—ir, ir],
then the coefficients of the series must be given by formulas (8.5) and
(8.8). But these formulas can be used to compute the coefficients
irrespective of whether or not the representation (8.1) is valid. It is only
necessary for the functionf to be such that the integrals in (8.5) and (8.8)
exist. A large class of functions for which these integrals exist consists of
the functions which are sectionally continuous on the interval [—ir, IT].
Roughly, a function is said to be sectionally continuous on an interval
[a, b] if it is continuous on [a, b] except possibly at a finite number of
points where it may have finite jumps. More precisely we have the
following definition.

Definition 8.1. Suppose that the functionf is defined and continuous at
every point of an interval [a, b] except possibly at the end points a, b and
at a finite number of interior points x1, x2, ... , where

(8.9)

Moreover, suppose that as x approaches the end points of each of the
subintervals

(8.10) (a, x1), (x1, x2), ... , b)

from the interior, the function f has finite limits. Then f is said to be
sectionally continuous on the interval [a, b].

We emphasize that in Definition 8.1 the function f is assumed to be
continuous in each of the subintervals (8.10) but it may or may not be
defined at the end points (8.9). However, each of the one-sided limits

(8.11) limf(x, + h) + 0), i = 0, 1, ... , n — 1;

h>O

(8.12) lim f(x1 — h) f(x1 — 0), i = 1, 2, ... , n,
h>O

must exist (and be finite). The limits in (8.11) are called limits from the
right and those in (8.12) limits from the left. The integral of f over [a,b]
exists and is equal to the sum of the integrals over each of the subintervals
(8.10),

g.xl

J
f(x)dx

=
J(x)dx

+ J
f(x)dx + ... + j f(x)dx.

a Vi rn-i

Note that continuous functions are special cases of sectionally continuous
functions.

If the function f is sectionally continuous on the interval [—73-, 73-], then,
for each n = 0, 1, 2, ... , the functions f(x) cos nx and f(x) sin nx are also
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sectionally continuous on [—ir, ir] and the integrals in (8.5) and (8.8) exist.
Therefore, for each function f which is sectionally continuous on [—IT, IT],
we can formally define a trigonometric series with coefficients given by
(8.5) and (8.8).

Definition 8.2. Letf be a sectionally continuous function on the interval
[—IT, ir]. The trigonometric series

a0
(8.13) + cos nx + sin nx),

n=1

where
1

an=_J flx)cosnxdx,n=O,1,2,...,
(8.14)

1 f1Tbn_J flx)sinnxdx,n=1,2,...,
IT

is called the Fourier series associated with f and the coefficients are
called the Fourier coefficients off.

Note that since f is assumed to be sectionally continuous on [—IT, IT], the
Fourier coefficients off are uniquely defined even iff is not defined at a
finite number of points. In fact the values of I can be changed at a finite
number of points without affecting the values of the Fourier coefficients
of f.

Example 8.1. Let

1i for —ir<x<O
(8.15) fix) = for O<x<ir.
This function is continuous on each of the intervals (—ir, 0) and (0, ir) and

fi—ir+O)= 1, f(O—O)= 1, f(O+O)=O, f(ir—O)=ir.
Therefore f is sectionally continuous on [—IT, IT]. The Fourier coefficients
of I are

=
— I fix) cos nxdx = — I cos nxdx + — f x cos nxdx
ITJ—lr IT i—IT

1 r sin nx cos
n n2 J0

1
(7T

1
çO

1
fIT

=
— j

fix) sin nxdx =
— J

sin nxdx + — x sin nxdx
IT 1T IT IT

1 — 1 + (ir —= — ——= — , n=1,2
7Tfl fl 7Tfl
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The Fourier series associated with the function (8.15) is

2 + IT
°o + 1 + (ir —

(8.16) +
L

2
cos nx — sin nx

4 7Tfl 7Tfl

The terms up to n = 3 of this series are

2-i-IT 1 2—n. 1. 2—IT.
+ —cos2x————-—sinx—— sin2x—-———sin3x.

4 2 3ir

Example 8.2. Let

(8.17) f(x)=IxI, —1r<x<ir.
This function is continuous on (—ir, ir) and

f(—ir+O)=ir, f(lr—O)IT.
Therefore f is sectionally continuous on [—IT, IT] and has Fourier coeffi
cients

1
çO

1 rT
a0=— I (—x)dx+— I xdxir,

7TJ7T

1 1

= — I (—x) cos nxdx + — x cos nxdx
ITJ_IT In0

1 1 x sin nx cos nxl° 1 Ix sin nx cos
— I +—I +irL J irL n n2 J0

— 1=2 n=12...

n= 1,2

The Fourier series associated with (8.17) is

(8.18) + 2 2_12 inn

The terms up to n = 3 are

IT 4 4
— — — cos x — — cos 3x.
2 in 91T

Example 8.3. Let

(8.19) fix) = x, —in <x < ir.

This function is continuous on (—in, and

f(—IT+O)=—in, f(in—O)=in.

Therefore f is sectionally continuous on [—IT,IT] and has Fourier coeffi-
cients
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f IT

a0=— xdx=O,
IT J_

1
fIT

1 Ix sin nx cos nxlIT
— I x cosnxdx = — I +

2
= 0, n = 1, 2,

ITJ_ir ITL n

1 1 1 x cos nx sin

n

= n = 1, 2.
The Fourier series associated with (8.19) is

00

(8.20) sin nx.
n=1 fl

The terms up to n = 3 are

2 sin x — sin 2x + sin 3x.

Examples 8.2 and 8.3 illustrate two general rules concerning the Fourier
series of even and odd functions. The function f is said to be an even
function if f(—x) = f(x) for alix for which f is defined; f is an odd function if
f(—x) = —f(x). The function (8.17) is even on (—ir,ir) and its Fourier
series (8.18) has only cosine terms. The function (8.19) is odd on (—ir,ir)
and its Fourier series (8.20) has only sine terms. Generally, we have the
following lemma, the proof of which is left to Problem 8.4.

Lemma 8.1. Letf be sectionally continuous on [—ir,ir]. 1ff is an even
function, its Fourier coefficients are given by

2 fir
(8.21) = — I fix) cos nxdx, n = 0, 1, 2, ... ; = 0, n = 1, 2

1ff is an odd function, its Fourier coefficients are given by

2
(8.22) I

fix) sinnxdx, ,z=1,2
IT J0

Thus, the Fourier series of an even function has only cosine (even)
terms and for this reason it is called a Fourier cosine series, while the
Fourier series of an odd function has only sine (odd) terms and it is called
a Fourier sine series. Note that most functions are neither even nor odd
and their Fourier series contain both cosine and sine terms, as illustrated
by Example 8.1.

A theorem which gives conditions on the functionf in order forf to be
representable by its Fourier series, and which describes the sense in
which the representation is valid is known as a Fourier theorem. Before
stating such a theorem we observe that each term of the Fourier series of
a function f is a periodic function of period 2ir. Consequently, if the series
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converges to some value at a point x of the interval (—IT,IT), it must also
converge to the same value at every point of the x-axis of the form x ±
2n7r, n = 1, 2, ... , and if the series converges at either pointx = ir orx =
—ir, it must converge to the same value at both points and at every point
of the form IT ± 2nir, n = 1, 2 Thus, convergence of the series at
every point of the interval [—IT,lr) guarantees the convergence of the
series for all x, the sum of the series being a periodic function of period
2ir. We conclude that if the Fourier series represents f on the basic
interval (—ir,ir) it must also represent the periodic extension off on the
whole real axis. On the other hand, 1ff were a periodic function of period
2ir, then the Fourier series representation off would be valid for all x if it
were valid on the basic interval (—ir,ir). It is convenient therefore to state
the following basic Fourier theorem in terms of a periodic function.

Theorem 8.1. (A Fourier theorem.) Suppose that the functionf and its
derivative are sectionally continuous on [—ir,ir] and that! is periodic of
period 2ir. Then f can be represented by its Fourier series (8.13) with
coefficients given by (8.14), in the sense that at every point x where f is
continuous,

a0
(8.23) fix) = — + cos nx + sin nx),

2 n=1

and at every point x where f has a jump discontinuity,

(8.24) [f(x + 0) + fix — 0)] = + cos nx + sin nx).

If a function f and its derivative f are sectionally continuous on an
interval [a,b] thenf is said to be sectionally smooth on [a,b]. Roughly, the
graph of such a function has at most a finite number of finite jumps and a
finite number of corners. Theorem 8.1 requires that f be sectionally
smooth on [—ir,ir]. Each of the functions in Examples 8.1, 8.2 and 8.3 is
sectionally smooth on [—ir,ir].

The conclusion of Theorem 8.1 is that the Fourier series off converges
tof(x) at every pointx wheref is continuous, while at a pointx where! has
a jump discontinuity, the Fourier series converges to the average of the
limits from the right and left. From the definition of continuity, at every
pointx where f is continuous,f(x + 0) = f(x — 0) = f(x) and hence (1/2)
[f(x + 0) + fix — 0)] = fix), so that (8.24) holds true for every x, — 00 <
x < 00• An alternate statement of Theorem 8.1 is, therefore, the follow-
ing: 1ff is periodic of period 2ir and sectionally smooth on [—ir,ir], then the
Fourier series off converges to (1/2) [f(x + 0) + f(x — 0)] for everyx, — 00

<x <
The proof of Theorem 8.1 is lengthy and technical. It can be found in

any book on Fourier series such as Churchill4 or Tolstoy.5
If the function f is defined only on the interval (—ir,ir), Theorem 8.1

may be applied to the periodic extensionf of f. For example, the periodic
extension of the function (8.15) of Example 8.1 is defined by
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y

0

Fig. 8.1

Ii for —ir<x<0 -f(x) = lx for < < ; f(x + 2ir) = j(x) for all x,

and its graph is shown in Figure 8.1. Since / is sectionally smooth on
[—ir,ir], Theorem 8.1 is applicable and the Fourier series (8.17) converges
to f(x) at every point where f is continuous, namely, at every x * ±nlr,
n = 0, 1, 2 At x = 0 the series converges to

while at x = ir the series converges to

Actually, it is easier to look at Figure 8.1 to determine the average of the
limits from right and left at points of discontinuity. Figure 8.2(a) shows
the graph of the function to which the Fourier series (8.16) converges for
every x. Figures 8.2(b) and (c) show respectively the graphs of the func-
tions to which the series (8.18) and (8.20) of Examples 8.2 and 8.3
converge.

The above discussion leads immediately to the following corollary
concerning the Fourier series representation of a function on the finite
interval [—IT,IT].

Corollary 8.1. Suppose that f is sectionally smooth on the interval
[—ir,ir]. Then f can be represented by its Fourier series (8.13) with
coefficients given by (8.14) in the sense that the series converges to: (i)

f(x) at every interior point x where f is continuous, (ii) [f(x + 0) + f(x —

0)] at every interior point x where f has a jump discontinuity, and (iii)

— 0) + f(—ir + 0)] at each of the boundary pointsx = —ir andx = ir.

Accordingly, from Examples 8.1, 8.2 and 8.3 we obtain the following
Fourier series representations:



for —ir <x <0
for x = 0

for 0 <x < ir
for x=±lr.

y

/
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(a)
- ./ 4/

(b) ' II
(c)

2 + ir 1—1 + 1 1
(8.25) +

2
— — sin nxl

4 lrfl rrfl J

1/2

Ui + ir)/2
ir 2 — 1

(8.26) / cosnx=\x\ for
2 fl2

. (x for —ir <x <ir
(8.27) 2 = So for x = +

n=1 fl —

Let us examine carefully the above three Fourier series representa-
tions. We observe that all three series converge to the functionf(x) = x on
the interval (0, ir). In particular, the function fix) = x is represented on
this interval by the Fourier cosine series in (8.26) and by the Fourier sine

x

Fig. 8.2
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series in (8.27). This suggests that any function satisfying suitable condi-
tions may be represented on the half-interval (0, ir) by a Fourier cosine
series or by a Fourier sine series. That this is actually possible follows
from the observation that a functionfdefined on (0, ir) can be extended to
an even or an odd function on the interval (—ir, ir). The even extensionfe
off is defined by

for 0<x<ir
e

kJ(—x) for —ir<x<0

and the odd extension by

1(x)—i 1(x) for 0<x<ir
0

— k—f(—x) for —ir <x <0.
1ff is sectionally smooth on [0, ir],fe is sectionally smooth on [—ir, ir] and
sincefe is even, the Fourier cosine series representation Offe Ofl [—IT, IT] is
the Fourier cosine series representation of f on [0, ir]. Similarly, the
Fourier sine series representation of on [—ir, IT] is the Fourier sine
series representation of f on [0, IT]. We are thus lead to the following
corollary.

Corollary 8.2 Suppose thatfis sectionally smooth on [0, IT]. Then fcan
be represented by the Fourier cosine series

a0
(8.28) — + cos nx; = — I 1(x) cos nx dx, n = 0, 1,

h n=1

and by the Fourier sine series
00

2
(8.29) sin nx; = — I f(x) sin nx dx, n = 1, 2,...,

n=1 ITJ0

in the following sense: (i) At every interior point x where I is continuous
both series converge to 1(x); (ii) at every interior point x where f has a
jump discontinuity, both series converge to— [f(x + 0) + f(x — 0)]; (iii) atx

= 0 the cosine series converges tof(0 + 0) while the sine series converges
to 0; and (iv) atx = ir the cosine series converges tof(ir — 0) while the sine
series converges to 0.

It is actually easier to remember Corollary 8.2 in the following alternate
form: 1ff is sectionally smooth on [0, ir], then at every point of the x-axis
the Fourier cosine series (8.28) off converges to the average of the limits
from right and left of the even periodic extension off, while the Fourier
sine series (8.29) offconverges to the average of the limits from right and
left of the odd periodic extension off of period 2ir.

Example 8.4. Let

(8.30) f(x)=1, O<x<ir.
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Certainly this function is sectionally smooth on [0, in. From (8.29)

2 2 1 cos nx]lr 2 1 —
lsinnxdx=—i— IinL fl J0 IT fl

and the Fourier sine series of (8.30) is

2
°°

1 —
(8.31) — sin nx.

lTn=i fl

This series converges to 1 for 0 <x <ir and to 0 for x = 0 and x = in,

2 . JO for x=0 and x=ir.
—Zj--—-————slnnx=11 for 0<x<ir

Figure 8.3 shows the graph of the function to which the series converges
for all x. From (8.28),

2 (2 for n=O
I lcosnxdx=<

in0 forn=1,2,...
so that the Fourier cosine series of (8.30) consists of the single term 1 (a
result that we could have guessed without any computations).

Example 8.5. The Fourier cosine and sine series representations of the
functionf(x) = x(in — x), 0 � x � IT, are

1 +
(8.32) x(in — x) = — — 2

2
cos nx, 0 � x in

6 n=1 n

(8.33) x(in — x) = 1

sin 0 �
The student should sketch the graphs of the functions to which the series
in (8.32) and (8.33) converge for all x, —°° < x < °°.

We turn now to a few important results concerning the speed and
manner of convergence of Fourier series.

The Parseval relation

y

-27r 0 27r 37r x

Fig. 8.3
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(8.34) + + = [f(x)]2dx

is satisfied by every functionfwhich is sectionally continuous on [—ir, in.
An immediate consequence of this relation is that the Fourier coefficients

off tend to 0 as n oo,

The speed of convergence of the coefficients to depends on the function
1. For example, the Fourier coefficients of the function (8.18) tend to 0
like 1/n2, while those of (8.20) tend to 0 like 1/n. The following lemma
describes a useful result in this respect.

Lemma 8.2. Suppose that f E Ck([_ii, in]), where k is some integer
� 1, and

p = 0, 1, ... , k — 1.

Then, for n = 1, 2,

I

� and
I I

�
where M is a constant that bounds I ,

for

Lemma 8.2 can be easily proved from the formulas for and using
integration by parts. The lemma asserts that under the stated conditions on
the functionf, the Fourier coefficients off tend to 0 like Note that the
conditions of the lemma are satisfied by a function I which is periodic of
period 2ir and belongs to Ck(_oo,

Since

cos nx + sin nx I + I , for
and n=1,2

the speed and manner of convergence of a Fourier series depends on the
speed of convergence of its coefficients to 0 as n 00• Suppose for
example that the function fsatisfies the conditions of Lemma 8.2 with k =
2. Then, according to Theorem 8.1,

fix) = + cos nx + sin nx),

for every x in [—in, in]. Moreover, according to Lemma 8.2,

4M n=1,2,...,
n

so that

for and n=1,2
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Since the series 4M,r2 converges, it follows from the Weierstrass M-

test (see Taylor)6 that the Fourier series of f converges uniformly to fix)
on the interval [—ir, in. Recall that this means that the rate of conver-
gence to 0 of the remainder

RN(x) = cos nx + sin nx)
N+ 1

as N is uniform over the interval [—lr,IT]. More precisely, given any
positive number €, there is an integer which depends on but not on x,
such that

IRN(x)I<€ for and

A more careful analysis gives the following result on uniform convergence
of Fourier series under weaker conditions on the function 1.

Theorem 8.2. Suppose that the function f is continuous on the interval
[—in, in], that f(—in) = f(in), and that the derivative f' is sectionally
continuous on [—in, in]. Then the Fourier series representation

(8.35) fix) = + cos nx + sin nx), —in � x � in,

is valid in the sense that the series converges absolutely and uniformly on
the interval [—in, in].

As an example, the Fourier series representation (8.26) is valid in the
sense that the series converges to x uniformly on [—in, ii-]. In fact the
series converges uniformly on the whole x-axis to the function whose
graph is shown in Figure 8.2(b).

Note that the conditions of the theorem are satisfied by a function I
which is periodic of period 2in and which is continuous and has a section-
ally continuous derivative on the interval [—in, in]. The corresponding
results on uniform convergence of the Fourier cosine and sine series
representation of a functionf defined on [0, in] can be easily obtained from
Theorem 8.2 by considering the even and odd extensions off.

Concerning the differentiability of Fourier series representations, it is
useful to recall the following differentiability result which is valid for any
function series: Suppose that f(x) = for x in some interval I and
suppose that the differentiated series converges uniformly on I.
Thenf'(x) = forx in!. As an example, this result is applicable to
(8.33) from which we obtain

4 1 —
(8.36) '2—cosnx,

inn=1 n

Observe that this result is not applicable to the series (8.26) or (8.32).
However, the result described in Problem 8.20 is applicable to these
series.
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So far in our discussion of Fourier series representations we have dealt
with functions which are either periodic of period 217- or can be extended
to periodic functions of period 2ir. Actually, the only thing special about
the number 2ir is that it makes the formulas simpler, due to the fact that all
the trigonometric functions cos nx and sin nx are periodic of period 2ir.
For the Fourier series representation of a periodic function of period 2L
the functions cos nirx/L and sin nirx/L should be used instead, since all
of these functions are periodic of period 2L. 'The corresponding formulas
can be obtained by making the simple change of variable (change of
scale),

irx Lt
—, x=—
L ir.

If fix) is a periodic function of x of period 2L which is sectionally
continuous on the interval [—L, L], the function

F(t) = I
is a periodic function of t of period 2ir which is sectionally continuous on
[—ii-, it]. According to Definition 8.2, the Fourier series associated with
F(t) is

+ (as, cos nt + sin nt),

where

1 IiT ('IT
=

— I F(t) cos nt dt, =
— I

F(t) sin nt dt, n = 0, 1

IT J-7r

Returning to the variable x and remembering that F(t) = fiLt/ir) =
fix), we obtain the Fourier series of fix)

a0 / nrrx
(8.37) — + cos — + sin

2 n=1\ L L

where

=—;: 1_L
(8.38)

1 rL
= — I fix)sin —dx; n=O,1LJ-L L

It is easy to see that all the representation results of this section are
valid for the Fourier series (8.37) with Fourier coefficients (8.38) pro-
vided that the words "period 2ii-" are replaced by "period 2L" and the
basic interval [—ir,ir] is replaced by [—L,L]. In practice, the Fourier
cosine and Fourier sine series representations of functions defined on
the interval [O,L],
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a0 nirx 2 fL nirx
(8.39) —+

I f(x)cos —dx, n = 0,1,...,
2 L LJo L

nirx 2 . nirx
(8.40) basin—; =-- I flx)sin —dx, n = 1,2,...

L L

are most frequently encountered.

Example 8.6. From (8.40) we obtain the Fourier sine series representa-
tion of the saw-tooth function,

L
x for

(8.41) 4L sin(nir/2) = 2
2 2 r Lfl1 L—x for

2

and from (8.39) we obtain the Fourier cosine series representation of the
rectangular pulse function,

a 4 1 . nira nir nirx—+— (—sin———-cos—)cos-—-——
L 2L 2 L

(8.42)
[o iorø�x<La

=1
1 for

2
X

2

L
0

where 0 � a � L. At the points x = (L ± a)/2 the series in (8.42) con-
verges to 1/2, which is the average of the limits from right and left. It is left
to the student to draw the graphs of the sums of the series in (8.41) and
(8.42) for allx.

We have described in this section only the more elementary aspects of
Fourier series. We omitted the proofs of the basic Theorems 8.1, 8.2 and
of the Parseval relation (8.34). These proofs and many other interesting
and important results on Fourier series can be found in many existing
books on the subject. We mention in particular the book of Tolstoy5 which
contains advanced topics in addition to a leisurely introduction to Fourier
series. We close with a short paragraph on a different kind of Fourier series
representation of functions which are not necessarily sectionally continu-
ous.

Consider the class of functions which are square integrable on the
interval [—ir,ir]; i.e., funtions f such that the integral [ftx)]2dx exists.
This class of functions is larger than the class of sectionally continuous
functions. For example, IxI_hI4 is square integrable but not sectionally con-
tinuous on [—lr,IT]. Definition 8.2 can be used to define a Fourier series
associated with every square integrable function. It can be shown that
Parseval's relation is satisfied by every square integrable function. More-
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over every square integrable function can be represented by its Fourier
series in the sense of convergence in the mean,

(8.43) urn [f(x) — + nx + basin nx)]2dx = 0.
2

Problems

8.1. Prove formulas (8.2) and (8.3).
8.2. Derive formula (8.8).
8.3. Prove that the constant term of the Fourier series associated with a

function f is equal to the average of Ion the interval [—ir,ir].
8.4. Prove Lemma 8.1.
8.5. Prove that 1ff is sectionally continuous on [—ir,ir] and periodic of

period 2ir, the Fourier coefficients of f defined by formulas (8.14)
are also given by the formulas,

1
flT+C

f(x)cos nx dx, n =0,1,2,
IT J —7T+C

1
(IT+C

f(x)sinnxdx, n = 1,2,...
IT —7T-FC

where c is any real number.
8.6. Rewrite the series (8.18) in the form

IT 4 cos(2k—1)x

2 ITk'l (2k—!)2

Do similar rewriting of the series (8.16), (8.31), (8.32) and (8.33).
8.7. Letfbe defined and continuous on [—ir,ir]. State conditions under

which the Fourier series of fconverges tof(x) for every x in [—ir,ir].
8.8. Let f be defined and continuous on [O,ir]. State conditions under

which (a) the Fourier cosine series of f converges to fix) for every
x in [0,ir]; (b) the Fourier sine series of fconverges tof(x) for every
x in [0,ir].

8.9. Derive (8.32) and (8.33).
8.10. Derive each of the following Fourier series representations. In each

case sketch the graph of the function to which the series converges
for all x.

1 2 1 10 for —ir<x<0
(a) — + — sin (2k— 1)x =

2 ITk=l2k1 (1 for 0<x<ir,
2 1(b) - — - —---i—-— cos 2kx = sin x, for 0 � x � IT,
IT ITk=14k1

°° (—1)"
(c) —a-- + cos nx = x2, for —IT � x � IT,

.' n
00

1 IT
(d) + (—j- cos nx — — sin nx) = x2, for 0 <x < 2ir.
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8.11. Prove Lemma 8.2.
8.12. Show that if f is continuous and has a sectionally continuous

derivative on [0, ir], then the Fourier cosine series representation

fix) = + cos nx, 0 � x � ir;

2 f(x)cosnxdx, n=O,1,...

is valid in the sense of absolute and uniform convergence on [0,
8.13. Show that if f is continuous and has a sectionally continuous

derivative on [0, and if f(0) = f(ir) = 0, then the Fourier sine
series representation

sin nx,0�x�ir;

2 r
= — I 1(x) sin nx dx, n = 1, 2,

in0
is valid in the sense of absolute and uniform convergence on [0, ir].

8.14. Are the representations (8.32) and (8.33) valid in the sense of
uniform convergence on [0, ir]?

8.15. Derive Parseval's relation (8.34) for functions which satisfy the
conditions of Theorem 8.2.

8.16. Show that a Fourier series cannot converge uniformly on any
interval in which the series converges to a discontinuous function.

8.17. If the coefficients of a Fourier series satisfy the conditions

�
I

I � n = 1, 2

where k> 1, show that the series must converge uniformly on the
whole x-axis.

8.18. Show that if a Fourier series converges to a discontinuous function,

the (I I +
I I) must be divergent.

8.19. Decide whether or not the series in Problem 8.10 converge uni-
formly for all x.

8.20. Prove the following differentiability result: Suppose I is continuous
on [—ir,ir],f(—ir) = f(ir), andf' andf" are sectionally continuous
on [—in, ir]. Then

fix) = + cos nx + sin nx), —in � x � in

and

[f'(x+O)+f'(x-O)]=
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= (—nan sin nx + cos nx), —ir <x < ir.
n=1

[Hint: Apply Theorem 8.1 tof'. If are the Fourier coefficients
of f' show that = and = —nan.]

8.21. Apply the result of Problem 8.20 to (8.26) to obtain

2 for —ir<x<O
- ' ' 0 for x=O
IT (+1 for 0 <x <ir.

Do the same for (8.32) appropriately extended to [—IT, IT], to ob-
tain

(—IT—2x for IT <x < 0

2 0 for x=O
n=i n IT2X for 0 <x < IT.

What are the sums of these series for x = ±IT?
8.22. Derive (8.41) and (8.42). What do you obtain from (8.42) if a =

8.23. Find: (a) the Fourier cosine series representation of the saw-tooth
function in (8.41); (b) the Fourier sine series representation of the
rectangular pulse function in (8.42).

9. Solution of the Dirichlet Problem Using Green's Functions
In this section we use the representation theorem derived in Section 5

to obtain an integral formula for the solution of the Dirichlet problem.
This formula involves a function known as the Green's function.

We give the details of the derivation of the formula only for the case of a
domain in R3. For the derivation, we must assume that the solution u of
the Dirichlet problem is in even though the problem only asks for u
to be in fl

Let be abounded normal domain in R3 and suppose that the function
u is in and harmonic in If r is any fixed point in the
representation theorem yields the formula

1 ( [ 1 8u(r') 8 1 1
(9.1) u(r) =— — u(r)— , do

4ir Lir — ri 8n t9fl Ir — ni

where r' is the variable point of integration on Formula (9.1) gives the
value of u at any point r E in terms of the values of u and of 8u/8n on
a�1. However the Dirichlet problem specifies only the values of u on
In order to get around this difficulty we consider a function h which is
harmonic in and is in Then, according to the second Green's
identity applied to the functions h and u, we have

I F 8u(r') 8h(r')]
(9.2) 0 = I Ih(r)— — u(r )—i dcr.

J
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Adding (9.1) and (9.2) we obtain the formula

I Iii 1 lau(r')
u(r) = I II— +h(r)i——

(93) Jon (L47T Ir — ri

,1 +h(r')]}dr.
t3n —ri

Now, in (9.3) the term involving t3u/t3n will disappear if we require in
addition that h(r') be equal to —(1/4ir) (1/Ir' — ri) for r' E Formula
(9.3) then becomes

an 1 1
(9.4) u(r) = — I u(r') — I — —-———--- + h(r') I do.

an L47r1r —ri

Thus, formula (9.4) gives the values of the solution u of the Dirichlet
problem at every point r E provided that we can find a function h E
C2(�1) which satisfies the special Dirichlet problem,

(9.5) = 0, for r' E

(9.6) h(r')
= 1 1__,

for r' E-rf
for each r E where denotes the Laplacian operator with respect to
r'. Since the solution of (9.5), (9.6) depends also on r we denote it byh(r',
r). The function in brackets appearing in the integrand of formula (9.4) is

known as the Green's function.

Definition 9.1. Let fl be a domain in R3. The function

(9.7) G(r', r) = _•L 1
+ h(r', r); r', r E �1, r' #

4ir ir — ri

where h(r', r) satisfies (9.5) and (9.6) for every r E is called the Green's
function for the Dirichiet problem for

In terms of the Green's function, formula (9.4) becomes

(9.8) u(r) =
— J

u(r') -f-. G(r', r)do, r E

Thus, the solution to the Dirichlet problem

(9.9) = 0 in �1,

(9.10) u =f on
is given by the formula

(9.11) u(r) = r E

We have derived formula (9.11) for the solution of the Dirichlet problem
(9.9), (9.10) under the assumption that the solution u of the problem exists
and is in C2(fl) and under the assumption that the Green's function G(r', r)
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exists. It can be shown by methods which are beyond the scope of this
book (see Kellogg)2 that, under suitable conditions on the domain �1, the
Green's function exists, and, for every r E �1, the solution u E of the
Dirichlet problem (9.9), (9.10) withf E is given by formula (9.11).

The existence of the Green's function was first hypothesized by G.
Green on the basis of physical evidence in electrostatics.

At first glance, the student may rightfully doubt the usefulness of
formula (9.11). After all, in order to use this formula to compute the
solution of the Dirichlet problem (9.9), (9.10), we must first find the
Green's function G(r', r), and this involves solving the Dirichiet problem
(9.5), (9.6) for every r E However this last problem involves boundary
data of a special type. Thus, formula (9.11) reduces the Dirichlet problem
with arbitrary data f to the Dirichlet problem with special data —(1/4ir)
(1/Ir' — ri). This in turn enables us to reduce the Dirichlet problem to the
problem of solving an integral equation and therefore allows us to use the
methods of the theory of integral equations. Finally, the Green's func-
tion is a useful tool in the theoretical study of the Dirichlet problem,
especially in determining the properties of the solution of this problem.

For very simple domains it is actually possible to construct the Green's
function explicitly. In the following section we will do this for a ball in R3.

Now, let us examine briefly the properties of the Green's function G(r',
r) for the Dirichlet problem for a domain in R3. By definition, as a
function of r', G(r', r) vanishes on and is harmonic in except at r' =
r, where it has a pole. As r' r, G(r', r) + oo like the inverse of the
distance of r' from r. An important property of G(r', r) is its symmetry
with respect to r' and r,

(9.12) G(r', r) = G(r, r'); r', r E r' # r.
The proof of(9. 12) is left as an exercise (see Problem 9.1). It follows from
(9.12) that, as a function ofT, G(T', T) vanishes on MI and is harmonic in

except at r = r'. Consequently, the function u(r) defined by (9.11) is
harmonic in fl (see Problem 9.2).

The Green's function for a domain in R2 is defined in a similar way.

Definition 9.2. Let be a domain in R2 The function

(9.13) G(r', r) =
1

+ h(r', r); r', r E fl, r' r,
2ir Ir —ri

where h(r', r) satisfies

(9.14) r'

r) = for r' E 8fl,
2ir Ir —ri

for every r E is called the Green's function for the Dirichiet problem
for

Using the representation theorem for n = 2, it can be shown, in exactly
the same way as above, that the solution to the Dirichlet problem (9.9),
(9.10) is given by the formula (9.11). Moreover, the properties of the two-
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dimensional Green's function are analogous to those of the three-dimen-
sional one, the only difference being that, as r' r, G(r', r) + 00, like
the logarithm of the inverse of the distance of r' from r.

For domains in with n > 3 the Green's function is again defined in a
similar way. As r' r, G(r', r) + oo, like 1/Ir' —

Problems

9.1. Prove the symmetry property (9.12) of the Green's function G(r', r).
[Hint: Let r1, r2 be two distinct points of fl, and consider the domain

obtained from by deleting two small balls B(r1, €) and B(r2, €)
from Apply the second Green's identity to the harmonic functions
u1(r) = G(r, r1), u2(r) G(r, r2) in and let E tend to zero to obtain
G(r1, r2) = G(r2, r1), which is the desired symmetry property.]

9.2 Show that the function u(r) defined by (9.11) is harmonic in ft
9.3. (a) Show that G(r', r) 0 for r' E fl, r' r. [Hint: Apply the

minimum principle to the harmonic function G(r', r) for r' in
= — B(r, €) with arbitrarily small.]

(b) Show that 0 for r' E where n is the exterior unit
8n

normal to 3ff.
9.4. Consider the Dirichiet problem for the Poisson equation in a

bounded normal domain of R3,

(9.16) V2u(r) = —q(r), r E

(9.17) u(r) = f(r), r E 3ff.

Equation (9.16) governs, for example, the steady state temperature
distribution in when heat sources, described by the function q(r),
are present in fl. Assuming that u E C 2(fl), use the representation
theorem of Section 5 to derive the following formula for the solution
of (9.16), (9.17):

(9.18) u(r)
= f q(r')G(r', r)dv — ff(r') G(r', r)do-

where G(r', r) is the Green's function for the Dirichlet problem for
given by (9.7).

9.5. Show that the solution of the Dirichlet problem for the Poisson
equation in a bounded normal domain fl of R2 is also given by
formula (9.18).

10. The Green's Function and the Solution to the Dirichlet
Problem for a Ball in R3

Let be the ball B(0, a) in R3 and let r be a fixed point in B(0, a). In
order to find the Green's function for the Dirichiet problem forB(O, a) we
must construct a function h(r', r) which, as a function of r', is harmonic in
B(O, a) and is equal to —(1/4ir)(1/Ir' — ri) for r' on the boundary S(O, a).

The function
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(10.1) _.!_.._
Ir — ri

is harmonic in B(0, a) with pole at r' = r. In Example 3.4, we saw that by
inversion with respect to the sphere S(0, a), the function (10.1) yields the
function

1

(10.2) a r'
— r' — — r
r a

which is harmonic in B(0, a) and is equal to l/Ir' — ri for r' E S(0, a).
Hence the desired function h(r', r) is

h(r' r
a

and the Green's function for B(0, a) is

1 1 1
(10.4) G(r , r) = — — —

1r—r a r
—r ——r
r a

If 0, 0 0 ir, denotes the angle between the vectors r' and r, then
using the cosine law we see that

(10.5) G(r', r) =
—

where

(10.6) R = Ir' — = (r'2 + r2 — 2r'T cos ®)1,2

(10.7) R' = r' — ri = (a2 + — 2r'r cos

Equations (10.5), (10.6), (10.7) clearly display the symmetry property of
the Green's function, G(r', r) = G(r, r').

Now, in order to use formula (9.11) for the solution of the Dirichlet
problem for B(0, a), we must compute the exterior normal derivative

r)on the boundary S(0,a). Since the exterior normal on S(0, a) is
an
in the radial direction, we have

(10.8)
aG(r',r) = 8G(r', r)

an
r'ES(O,a) r'=a

and a simple computation (see Problem 10.1) yields

10 9
aG(r', r) — — 1 a2 —

ar' r'=a —
4ira (a2 + r2 — 2ar cos
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Let us consider now the Dirichlet problem forB(0, a) which asks for the
function u E fl C°(fl) satisfying

(10.10) V2u(r) = 0 for r E B(O, a),

(10.11) u(r) = f(r) for r E S(O, a),

wheref is a given function in C°(S(0, a)). According to formula (9.11), u is
given by

(10.12) u(r) = f — r2)f(r')
for r E B(O, a).

4lTa JS(O,a) (a2 + r2 — 2ar cos

The integral in formula (10.12) is known as Poisson's integral, and the
function

1 2_ 2

(10.13) P(r', r) =
— a T

4ira (a2 + r2 — 2 ar cos ®)3/2

is known as the Poisson kernel. In terms of the Poisson kernel, formula
(10.12) becomes

(10.14) u(r) = P(r', r)f(r')do- for r E B(0, a).

(O,a)

It is sometimes useful to write formula (10.12) in terms of spherical
coordinates. If (r, 0, 4)) are the spherical coordinates of r E B(O, a) and if
(a, 0', 4)') are the spherical coordinates of the variable point of integration
r' on S(0, a), formula (10.12) becomes

u(r, 0, 4))=

(10.15) a (a2 — r2)f(0', 4)') . , ,

= 4ir Jo Jo (a2 + r2 — 2ar cos 0)312
sin 4) d4) dO, for r <a,

where (see Problem 10.2)

(10.16) cos 0 = cos 4) cos 4)' + sin 4) sin 4)' cos (0 — 0').

In the previous section, we derived formula (9.11) under the assump-
tion that the solution to the Dirichlet problem is in C2(fl). We then stated
that, under suitable assumptions on the domain fl, formula (9.11) gives
the solution to the Dirichlet problem for r E even when the solution is
required to be only in C2(fl) fl C°(fl). We will now actually prove this last
statement for the Dirichiet problem for B(0, a).

Theorem 10.1. Let u E C2(B(0, a)) fl C°(B(0, a)) be the solution to
the Dirichlet problem (10.10), (10.11) with f E C°(S(0, a)). Then u is
given by

f P(r', r)f(r')dcr, for r <a
(10.17) u(r) = S(O,a)

f(r), for r = a,

where P(r', r) is the Poisson kernel (10.13).
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Before proving Theorem 10.1 we need to establish the following proper-
ties of the Poisson kernel:

(i) P(r', r) 0 for r E B(O, a), r' E S(O, a).

(ii) P(r', r) is harmonic as a function of r E B(O, a) for r' E S(O, a).

(iii) P(r', r)dcr = 1 for every r E E(O, a).
(O,a)

Property (i) follows immediately from the definition (10.13) of P(r', r).
Property (ii) follows from the fact that the Green's function G(r', r) is
harmonic as a function of r E B(0, a) for every r' E S(0, a), and from the
fact that P(r', r) is obtained from G(r', r) by differentiation involving the
"parameter" r' (see Section 9 of Chapter V). Finally, property (iii)
follows from the fact that the solution of the Dirichiet problem

V2u(r) = 0 for r E B(0, a), u(r) = 1 for r E S(0, a)

is the function u(r) = 1, r E B(O, a). Since this solution is in C2(E(O, a)) we
know that formula (19.11) and hence formula (10.14) is valid. Formula
(10.14) with f = u = 1 is precisely property (iii).

Proof of Theorem 10.1. Since the solution of the Dirichlet problem is
unique, it is enough to show that the function u(r), defined by (10.17), is
harmonic in B(0, a) and continuous in B(O, a). That u(r) is harmonic in
B(0, a) follows immediately from the fact that in B(0, a), u(r) is a
superposition of the harmonic functions P(r', r). It remains therefore to
show that u is continuous in B(0, a) and since we already know that u E
C2(B(0, a)) it is enough to show that for any point r0 E S(0, a),

(10.18) lim u(r) = f(ro).
TEB(O,a)

More explicitly we must show that

(10.19) lim f P(r', r)f(r')dcr = f(r0).

rEB(O,a)

Now, from property (iii) of P(r', r) we have

f P(r', r)f(ro)dcr = f(r0), for every r E B(0, a),

and (10.19) is equivalent to

(10.20) lim f P(r', r)[f(r') — f(ro)]do = 0.

rEB(Oa)

In order to prove (10.20) we note first that since f is continuous on S(0,
a), it is bounded on S(O, a), i.e., there is a number M > 0 such that

(10.21)
I
f(r')

I

M for every r' E S(0, a).
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Moreover, since f is continuous at r0, given any 0, there is a 6 > 0 such
that

(10.22)
I
f(r') — f(ro)

I
< €, for r' E S(0, a), Ir' — rol < 6.

Now let C(r0, 6) denote the part of the sphere S(0, a) contained in the ball
B(r0, 6),

C(r0, 6) = S(0, a) fl B(r0, 6).

Then (10.22) can be written as

(10.23) If(r') —f(r0) I < for r' E C(r0, 6).

Now, we split the integral in (10.20) into two parts,

f P(r', r)[f(r') —
S(O,a)

(10.24)
= f P(r', r)[f(r') — f(ro)]dcr

C(ro,6)

+ f P(r', r)[f(r') -
S(O,a)—C(r,,8)

Using (10.23) and properties (i) and (iii) of P(r', r) we find that

f P(r', r)[f(r') —
C(r,,6)

(10.25) f P(r', r)dcr
C(r,,6)

P(r', r)dcr = €, for every r E B(0, a).
(O,a)

Since is an arbitrary positive number, (10.20) will follow if we can prove
that

(10.26) lim f P(r', r)[f(r') — f(r0)]dcr = 0.
r—'r0 S(O,a)—C(r,,6)

rEB(O,a)

From (10.21) we have

f P(r', r)[f(r') - f P(r',
S(O,a)—C(r,,6)

and hence it is enough to show that

(10.27) lim f P(r', r)do = 0.
r—'r0 S(O,a)—C(r,,6)

rEB(O,a)

Since we are only interested in what happens when r is near r0, let us only
consider r E B(0, a) fl B(r0, 6/2). Then for r' E [S(0, a) — C(r0, 6)]
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Ir' —ri —rol — Ir —rol

and

1 a2—r2 /2\3 1P(r',r)=— —(a2—r2).4iralr —ri \&' 4ira

Consequently,

J P(r', r)do- _L (a2 — r2)f 1 do- a(a2 —
S(O,a)

for r E B(O, a) fl B(r0, and because of the factor (a2 — r2), (10.27)
follows. The proof of the theorem is now complete.

A careful review of the proof of Theorem 10.1 shows that we did not
fully use the assumption that f is continuous everywhere on S(O, a). We
only used the fact that f is bounded on S(0, a) and that f is continuous at
the point r0 E S(O, a). It follows that under the assumption that f is
piecewise continuous (continuous everywhere except along a finite num-
ber of curves on S(0, a) where f may have finite jumps), the Poisson
integral (10.14) defines a function u(r) which is harmonic for r E B(O, a)
and which is such that at every point r0 E S(O, a) wheref is continuous,

lim u(r) =f(r0).
r—+r0

rEB(O,a)

This observation enables us to solve the Dirichlet problem with piecewise
continuous boundary data using the Poisson integral (10.14), with the
understanding that the desired solution u(r) is not in C°(B(O, a)), but is
harmonic in B(O, a) and approaches the value f(r0) as r r0 E S (0, a),
at every point r0 E S(0, a) where f is continuous. A simple example is the
problem where f is equal to 1 on the upper hemisphere of S(0, a) and 0 on
the lower hemisphere.

The Poisson integral solution of the Dirichiet problem for the ball B(O,
a) in R2 was obtained in Section 7 using separation of variables, Fourier
series and summing the resulting series solution. This solution can be
obtained also by determining the Green's function for B(0, a) in R2 and
using formula (9.11) (see Problem 10.4). The same can be done for a ball in

with n > 3.

Problems

10.1. Derive formula (10.9).
10.2. Derive formula (10.16). [Hint: cos 0 = r' r/(r'r).]
10.3. Use Theorem 10.1 to show that the value at the origin of the

solution of the Dirichlet problem for B(O, a) in R3 is equal to the
average of its values on the boundary S(O, a).

10.4. Use Example 3.3 to derive the Green's function for the Dirichlet
problem for B(0, a) in R2,
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G(r', r) = log
1

— log
1

2ir r —ri a 'r-—r

Then use formula (9.11) to derive the Poisson integral solution
(7.21).

11. Further Properties of Harmonic Functions
The Poisson integral solution of the Dirichiet problem for a ball in R'1 is

not very useful for the actual computation of the values of the solution in
the ball, since the integrations involved are rather complicated. However,
as we will see in this section, the Poisson integral is very useful in deriving
important properties of harmonic functions.

Let u be harmonic in a domain fi of and suppose that B is any ball
whose closure E is contained in ft Then the value of u at any point in B is
given by the Poisson integral involving the values of u on the boundary S
of B. Since the harmonicity of a function is invariant under translation of
coordinates, we can always take the center of B to be the origin. Suppose
then that the ball B(O, a) is such that its closure B(O, a) is contained in the
domain where u is harmonic. Then, for every r E B(O, a),

(11.1) u(r)
= f P(r',r)u(r')do-

S(O, a)

where r' is the variable point of integration on S(O, a) and P(r', r) is the
Poisson kernel. In previous sections we derived the expressions for P(r',
r) for n = 2 and n = 3. For n = 2

1 a2—r2
(11.2) P(r', r) = — , (n = 2),

2iraa2 +r2 — 2ar cos (0— 4)

where (r, 0) and (a, 4) are the polar coordinates of r and r', respectively.
For n = 3

1 a2—r2
(11.3) P(r , r) = —— , (n = 3),

(a2 + r2 — 2ar cos 0)312

where r = ri, a = Ir'I and 0 is the angle between r and r'. For n > 3 the
expressions for P(r', r) are similar.

The two important theorems that we present in this section are valid for
all n. Their proofs, which are based on the Poisson integral (11.1), vary
only in minor details for different values of n. We will only give the proofs
either for n = 2 or for n = 3.

Theorem 11.1. (Liouville's theorem.) A function u(r) which is har-
monic for every r E R'1 cannot have an upper bound or a lower bound
unless u(r) is constant.

Proof. We give the proof for n = 2. Let us assume that u (r) is harmonic
in R2 and has a lower bound, i.e., there is a number M such that u(r) M
for every r E R2. We must show that u(r) = const. in R2. The function
u'(r) = u(r) — M is also harmonic in R2 and is such that u'(r) 0 for
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every r E R2. If we show that u'(r) = const. in R2, it would follow that
u(r) = const. in R2. Let us then drop the prime and assume that u(r) is
harmonic and u(r) 0 for every r E R2. We will show that for any
point r E R2, u(r) = u(O) and hence u(r) is constant.

Let r be a fixed point in R2 and let a be a number greater than r = ri so
that the circle B(O, a) contains r. Then, by (11.1) and (11.2) we have

1 a2—r2
(11.4) u(r) = — I u(a,a +r2—2arcos(O—4))
Since —1 cos (0 — 4)) 1,

a—r a2—r2 a+r
a+r a2+r2—2arcos(0—4)) a—r'

and since u(a, 4)) 0,

a—r a2—r2 a+r
u(a, 4)) u(a, 4)) —— u(a, 4)).a+r a2+r2—2arcos(0--4)) a—r

Integrating with respect to 4), in view of (11.4), we obtain

a—ri 121T a+r 127r

— I u(a, 4))d4 u(r) —— — I u(a, 4))d4),a+r2',rj0 a—r2',rj0
and using the mean value theorem for harmonic functions,

a—r a+r
u(O) u(r) —— u(O).a+r a—r

Now letting a —p +00 we obtain

u(O) u(r) u(O)

and hence u(r) = u(O).
We have shown that if u(r) has a lower bound then it is a constant. If

instead, u(r) had an upper bound, then —u(r) would have a lower bound;
consequently —u(r), and hence u(r), would be a constant. The proof of
the theorem is complete.

An immediate corollary of Liouville's theorem is the following.

Corollary 11.1. The only functions which are bounded and harmonic in
all of are the constant functions.

Another important result which follows from the Poisson integral solu-
tion of the Dirichlet problem is the fact that a harmonic function is
necessarily analytic in its domain of definition. Recall that a function u is
analytic in a domain fl of if, at every point of fl, u has a Taylor series
which converges to u in a neighborhood of that point.

Theorem 11.2. A function u which is harmonic in a domain fl of is
analytic in fl.

Proof. We give the proof for n = 3. Let Q be any point of fl. We must
show that u is analytic at Q. Since harmonicity and analyticity are
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invariant under translation of coordinates, we may assume that the point
Q is the origin. Hence, we must show that u has a Taylor series expan-
sion,

(11.5) u(x,y, z) =
i,j, k=O

which is valid for (x, y, z) in some neighborhood of the origin. To do this
we use the Poisson integral representation of u near the origin. Let a > 0
be sufficiently small so that B(0, a) C fl. Then, for every r E B(0, a), u(r)
is given by (11.1), where P(r', r) is given by (11.3). Let (x, y, z) and

be the rectangular coordinates of r and r', respectively. Suppose that
we can show that the Poisson kernel P(r', r) has a Taylor series expansion

(11.6) P(r', r) = ii,
i,j,k=O

which converges uniformly for (x, y, z) E B(0, for some > 0, and
E S(O, a). Then substitution of (11.6) into (11.1) and interchange of

the order of integration and summation (which is allowed by the uniform-
ity of the convergence of (11.6)) would yield (11.5) valid for (x, y, z) E
B(O, Now since

a2 — r2 r 2ar cos 0 — r21—312
P(r',r)

—— i4ira a

and since a2 — r2 = a2 — (x2 + y2 + z2) is a polynomial, it is enough to show
that

F 2ar cos 0 — r21—312
(11.7) 1

— 2 I = L1
L a J i,j,k=O

with the convergence being uniform for (x, y, z) E B(0, and E
S(O, a). In order to show this we use the binomial expansion

(11.8) (1 — w)312
=

where a0 = 1 and am > 0 for all m. The series in (11.8) converges
absolutely and uniformly for wi p where p is any number <1. If we set

2ar cos 0 - r2
(11.9) w

a2

and if r E B(O, a), we have

2arcosO—r21 2ar+r2 2a+r 3
w1

a2 a2 a2 a

If we now restrict r to be in B(O, a/4), we have
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3
wi for (x, y, z) E B(0, a/4) and 'ri, E S(0, a).

Hence

(11.10) [i — 2ar cos® — r2 ]_3/2

=

with the series convergent uniformly for (x, y, z) E B(0, a/4) and 'ri,
E S(0, a). From (11.9),

w = + + — (x2 + y2 + s)],

so that the series in (11.10) is a series of polynomials with positive
coefficients. We now use a result from the theory of analytic functions of
a complex variable, according to which the series in (11.10) can be
rearranged by expanding + 'qy + — (x2 + y2 + Z2)]m and grouping

together terms of the form xiyizk. This rearrangement would yield (11.7)
with the convergence being uniform for (x, y, z) E B(0, a/4) and 'q, E
S(0, a). The proof of the theorem is now complete.

Problems

11.1. The functions

1, r cos 0, r sin 0, r2 cos 20, r2 sin 20,

are harmonic in all of R2 (see Section 2). Show directly that, except
for the function 1, all the others are not bounded either from above
or from below.

11.2. Prove Liouville's theorem for n = 3.
11.3. Prove Theorem 11.2 for n = 2.

12. The Dirichlet Problem in Unbounded Domains
Up to this point of the chapter we have studied the Dirichlet problem

under the assumption that fl, the domain in which Laplace's equation is
to hold, is a bounded domain. In this section we turn our attention to
unbounded domains. We will see that, in general, it is possible to use
inversion with respect to a sphere in order to transform a Dirichlet
problem for an unbounded domain into a Dirichlet problem for a bounded
domain, provided that the solution in the unbounded domain satisfies a
certain condition at infinity.

We begin with a simple example which shows that uniqueness for the
Dirichlet problem in an unbounded domain may fail to hold if the solution
is not required to satisfy any additional condition. Let fl be the comple-
ment of the closed unit ball in fl = — B(0, 1), and consider the
problem of finding a function u in C2ffl) fl C°ffl) such that

V2u(r) = 0, r E fl,
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(12.2) u(r) = 1, r E an = S(O, 1).

It is easy to verify that the functions

u1(r) = 1, u2(r) = 1 + log r, if n = 2,

and

u1(r) = 1, u2(r) = if n 3,

are solutions of the problem. In fact superposition of these two solutions
yields infinitely many solutions of the problem. We are faced then with
the following question: What additional condition must be imposed on the
solution u in order to guarantee uniqueness for the Dirichlet problem in
unbounded domains? As we will see, this additional condition arises
naturally when the method of inversion with respect to a sphere is used to
transform the Dirichiet problem for an unbounded domain to a problem
for a bounded domain. The condition limits the behavior of u(r) for large
values of r and thus it may be viewed as a (boundary) condition at infinity.

The domain of the above example is known as an exterior domain. A
domain fl in is called an exterior domain if it is the complement of the
closure of a bounded domain. More specifically, if G is a bounded domain
such that

= - G

then fl is called the domain exterior to G. Note that 9fl = G
U = For simplicity, our discussion of the method of inversion with
respect to a sphere will be limited to exterior domains.

Let fl C be a domain exterior to a bounded domain G, let f be a
given function in C°(afl) and suppose that u(r) is a function in C2(fl) n
C°(fl) satisfying

(12.3) V2u(r) = 0, r E fl,
(12.4) u(r) = f(r), r E an.

Since translations and similarity transformations preserve harmonicity,
we may assume without loss of generality that the closed unit ball B(O, 1)
is contained in G. Let be the domain consisting of the origin together
with the set of points obtained by inversion of fl with respect to S(O, 1)
(see Fig. 12.1). is a bounded domain contained in B(O, 1). Each point
r* E fl*, other than the origin, corresponds to a unique point r E
according to the inversion formulas

(12.5) rr* = r*r, rr* = 1.

The origin, r* = 0, corresponds to infinity. At this point we restrict the
discussion to the case n = 3 and let

(12.6) u*(r*) = u(r), r* E r*

and
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r

(1

Fig. 12.1

(12.7) = r* E

The function is defined and harmonic in excepting the origin, is
defined and continuous on afl*, and assumes the values off* on ant. If

were defined and harmonic in all of fl* including the origin, then
could be regarded as the solution of a Dirichlet problem in fl*• The
following theorem will enable us to define at the origin in such a way
that the resulting function is harmonic in the whole of fl*, provided that u
satisfies a certain condition at infinity.

Theorem 12.1. Let v(r) be defined and harmonic in a neighborhood
of the origin of except at the origin itself. Then v(r) can be defined at
the origin in such a way that v(r) will be harmonic throughout (includ-
ing the origin) provided that the following condition is satisfied:

j v(r) is bounded for r E — {O}, if n = 2,
(12.8)

I
v(r)

I
for E fl0 — {O}, if n 3,

where —p 0 as —p
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Theorem 12.1 is known as a theorem on removable singularities of
harmonic functions; a proof may be found in the book of Petrovskii.3

For the case n = 3 under discussion, it follows from (12.6) that

r* I u*(r*)
I = I u(r)

Since r as 0, Theorem 12.1 asserts that u*(r*) can be defined
at r* = 0 in such a way that will be harmonic throughout fl*, provided
that u(r) approaches 0 as r

(12.9) u(r) 0 as r —p oo•

(Note that (12.9) means: given 0, there is R > 0 such that Iu(r)I <€
for all r E fl such that JrJ > R.)

In exactly the same way, it is easy to see that for n > 3 the required
condition at 00 is again condition (12.9), while for n = 2 the condition at 00
is that u remains bounded; i.e., there is a constant M > 0 such that

(12.10) u(r) M for all r E Il.
We have shown that by inversion with respect to a sphere the exterior

Dirichlet problem (12.3), (12.4), subject to the condition at infinity (12.9)
when n 3 and (12.10) when n = 2, can be transformed to a Dirichiet
problem for a bounded domain. It follows that all the results that we
already know for bounded domains, such as theorems on uniqueness,
existence and continuous dependence on data, lead to corresponding
results for exterior domains. For example, we have the following unique-
ness theorem.

Theorem 12.2. Let Il be an exterior domain in and let f be a given
function in C°(afl). There is at most one function u in c2(fl) fl
which satisfies (12.3), (12.4) and the condition at infinity (12.9) if n 3
or (12.10) if n = 2.

Example 12.1. If n = 2, the only solution of (12.1), (12.2) which
remains bounded is the function u(r) = 1. If n = 3, the only solution of
(12.1), (12.2) which approaches zero as r 00 is the function u(r) =
hr.

Example 12.2. Let fl be the domain exterior to the unit disc B(0, 1) in
R2 and consider the exterior Dirichlet problem

(12.11) V2u(r, 0) = 0, r > 1, —iT 0

(12.12) u(1, 0) = f(0), —iT 0 iT,

(12.13) u(r, 0) is bounded in Il,

where f is in C°(afl), and f' is sectionally continuous. By inversion with
respect to S(0, 1), u*(r*, 0) satisfies the interior Dirichlet problem for the
unit disc which was solved in Section 7. u*(r*, 0) is given by either the
series (7.9) or the Poisson integral (7.18) with r replaced by r*. Since r* =
hr and u*(r*, 0) = u(r, 0), the solution of the exterior problem (12.11),
(12.12), (12.13) is given by the series
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(12.14) u(r, 0) = + r

n 1, ... , are the Fourier coefficients of f, or by the
(Poisson) integral,

1 (1 —
(12.15) u(r O)=—— i — r�1.

2',rJ0 1+r2—2rcos(O—4))
The method of inversion with respect to a sphere can be applied to

unbounded domains other than exterior domains, provided that the
complement of the considered domain contains a ball. Since the bound-
aries of such domains may extend to infinity, the behavior of the bound-
aries and of the Dirichlet data as infinity is approached must be care-
fully studied and taken into account in formulating well-posed prob-
lems.

Problems

12.1. Derive condition (12.10) for the case n = 2.
12.2. For n 3, use the maximum principle for bounded domains

to prove uniqueness and continuous dependence on data for the
exterior Dirichiet problem (12.3), (12.4), (12.9). [Hint: Consider
the domain = flflB(O,R).]

12.3. Find the steady state temperature distribution in an infinite uni-
form atmosphere exterior to a spherical solid of radius R, if the
surface of the solid is kept at the constant temperature T0, assum-
ing that the temperature approaches 0 at infinity.

12.4. Find the steady state temperature distribution in an infinite
uniform atmosphere exterior to an infinite circular cylinder of
radius R, if the surface of the cylinder is kept at constant tempera-
ture T0, assuming that the temperature remains bounded.

12.5. Find the series solution of the exterior Dirichlet problem of
Example 12.2 if f(O) is given as in Problem 7.7.

12.6. Use inversion with respect to S(O, 1) to obtain the solution
u(r,04) of the exterior Dirichlet problem,

= 0, r> 1, 0 0 2ir, 0 4)
0 0

as

where (r,04) are the spherical coordinates of r E R3.
12.7. Show that without the condition that u remains bounded, the

Dirichlet problem for the upper half-plane y > 0,

V2u(x,y) = 0, —00 <x < oo, y > 0,
u(x,0) = 1, —00 <00,

has infinitely many solutions. What is the unique bounded solu-
tion of this problem?

12.8. (a) Show that inversion with respect to the circle S(0, 1) maps the
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half plane fl = {(x,y) E R2, y > 1} onto the disc with center
(0, 1/2) and radius 1/2. Polar coordinates are useful here.

(b) Show that inversion with respect to S (0, 1) maps the quarter
plane fi = {(x,y) E R2, x > 1, y > 1} onto the lens-shaped
domain bounded by the two circles

12 1 / 1\2 1

12.9. Consider the lens-shaped domain of problem 12.8(b). Obtain the
solution

2 x2+y2—y
u(x y) = — arctan —

IT x2+y2—x

of the Dirichlet problem which requires u = 1 on the top
boundary of the lens, and u = 0 on the bottom boundary of the
lens. [Hint: The solution of the corresponding Dirichlet problem
in the quarter space x > 1, y > 1 is easily found to be

u(x,y)
ir IT x—1

where 4) is the polar angle with (1, 1) as the center of the polar
coordinate system. See Section 2, in particular, the discussion
following (2.20).]

13. Determination of the Green's Function by the Method of
Electrostatic Images

Let us recall the definition of the Green's function for the Dirichlet
problem for a domain fl of R3,

(13.1) G(r', r) =± 1
+ h(r', r); r', r E fl, r' * r.

4ir Ir — ri
For each fixed r E fl, the function h(r', r) is harmonic in fl as a function of
r' and satisfies the boundary condition

(13.2) h(r', r) = 1 r' E nfl.
4ir Ir — ri

Thus, as a function of r', G(r', r) is harmonic in fl excepting the point r' =
r, and vanishes on afl. Moreover as r' —+ r, G(r', r) —* oo like the inverse of
the distance between r' and r. We have seen in Section 9 that the solution
of the Dirichiet problem

(13.3) V2u = 0 in fl, u =f on afl

can be represented in terms of G(r', r) by the formula

(13.4) u(r) =
— f G(r', r)do-, r E fl,
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where a/an represents differentiation in the direction of the exterior nor-
mal to afl. The problem of solving (13.3) is thus reduced to the problem of
determining the Green's function G(r', r). It can be shown that, under
appropriate conditions, formula (13.4) gives the solution of the Dirichlet
problem even when fl is an unbounded domain.

A useful method for the determination of the Green's function G(r', r) is
based on interpreting G(r', r) as the electrostatic potential due to a unit
charge located at the point r of the region fl if the boundary 8fl of the
region is a grounded conducting surface. (The potential is zero on a
grounded surface). The first term in the formula (13.1) for G(r', r)
represents the potential due to a unit charge at the point r. This unit charge
induces a distribution of charges on the conducting surface 8fl, and the
second term h(r', r) in (13.1) represents the potential due to this induced
charge distribution on au. The determination of h(r', r) thus depends on
first finding the induced charge distribution on an, which in itself is a diffi-
cult problem. The method of electrostatic images enables us to circumvent
this problem. Instead of viewing h(r', r) as the potential due to the induced
charge distribution on we consider h(r', r) as being the potential due to
imaginary charges located in the complement of IL These charges, which
are called the electrostatic images of the unit charge at the point r of fl,
must be introduced in the complement of fl in such a manner that the
potential h(r', r) due to these charges satisfies condition (13.2). In other
words, at each point of the boundary an of the potential due to the
electrostatic images must be equal to the negative of the potential due to
the unit charge at r. The total potential G(r', r) would then be equal to zero
on 3fl, and 3fl could be regarded as a grounded conducting surface. In
many cases, the geometry of an is simple enough that the choice of electro-
static images is obvious.

Example 13.1. Let fl be the upper-half space in R3,

n = {(x,y,z): z > O}

and consider a unit charge at the point r = (x, y, z) of fl as shown in Figure
13.1. If we introduce a negative unit charge at the point r* = (x, y, —z), the
resultant potential due to the two charges will be zero on the boundary z =
O of Thus, the necessary electrostatic image of the unit charge at r is a
negative unit charge at the point r* which is the mirror image of r with
respect to the boundary of The resulting Green's function is then

(13.5) G(r', r) =_L 1 1

47r1r —ri
Indeed, when r' is on an, Jr' — ri = Ir' — r*I and G(r', r) = 0. In terms of
coordinates

1 1
G(r, r)

[(x' — x)2 + — y)2 + (z' — z)2]"2

± 1

— 41T [(x' — x)2 + (y' — y)2 + (z' + z)2]"2
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It is left as an exercise to show that formula (13.4) for the solution of the
Dirichiet problem (13.3) becomes in this case

u(x y r f(x',y')dx'dy'
(13.6) [(x' — x)2 + (y' — y)2 + z2]312

Example 13.2. Let fl be the quarter space in R3,

Il {(x,y,z):y > O,z > O},

and consider a unit charge at the point r = (x, y, z) of Il as shown in Figure
13.2. The necessary electrostatic images in this case are: a negative unit
charge at r1* = (x, —y, z), a positive unit charge at r2* = (x, —y, —z), and
a negative unit charge at r3* = (x,y, — z). It is easy to see from the geome-
try of Figure 13.2 that the resulting potential due to all four charges
vanishes on the boundary of Il and the desired Green's function for the
Dirichlet problem for is

ir 1 1 1 1
(13.7) G(r', r)

[ir' — ri Ir' — ri*I + Ir' — r2*I — Ir' — r3*I

Example 13.3. Let Il be the ball B(O, a) and consider a unit charge at the
point r of fl as shown in Figure 13.3. Using some geometrical arguments it
can be seen that the necessary electrostatic image must be located at the

z

(—)

Fig. 13.1



(—)
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Fig. 13.2

(—)

point r* = r and must be a negative charge of magnitude air. (The point

r* is inverse to r with respect to the sphere S(O, a).) The resulting Green's
function is then

11

(+)

y

a2r —rr

Fig. 13.3
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(13.8) G(r', r) =
1 _± air

4irlr —ri 4irlr _r*I
It is left as an exercise to show that when r' is on the boundary S(0, a) of

G(r', r) = 0. After some manipulation, formula (13.8) can be written in the
form (10.4) which was obtained in Section 10.

The method of images can be used with domains in spaces of dimension
other than three even though the concepts of electrostatics have no real
significance in spaces of dimension greater than three. The potential due to
a unit "charge" at the point r of is

— log for n = 2 and — 2
for n 3,

2ir r —ri

where is the surface area of the unit sphere in

Problems
13.1. Derive formula (13.6) for the solution of the Dirichiet problem

= 0; —00 <x, y <00, 0 < z <00,

u(x, y, 0) = f(x, y), —00 y <00.

Note that if f(x, y) vanishes outside a bounded region of the (x, y)-
plane, then u(r) —p 0 as r 00•

13.2. Prove that the Green's function (13.8) vanishes when r' is on the
sphere S(0, a). You will need to make some careful geometric
arguments.

13.3. Find the Green's function for a domain between two parallel
planes

= {(x, y, z): 0 < z < 1}.

You will need an infinite sequence of electrostatic images. [Hint:
introduce charges so that each plane z = k, k = 0, ±1, ±2, ... is at
zero potential.]

13.4. Find the Green's function for the Dirichlet problem for a "wedge"
domain bounded by two planes intersecting at an angle 44. Use
cylindrical coordinates with the z-axis coinciding with the line of
intersection of the planes so that

—00<z<00}

Will the method of images work for any wedge of angle IT/k,k = 1,

2,...?
13.5. Find the Green's function for the upper hemisphere

= {(x,y,z): (x,y,z) E B(0,a),z > 0}.

13.6. Use the method of images to find the Green's function for the
upper-half plane in R2. Then use (13.4) to derive the formula

y f(x')
u(x,y) =— I dx

—x)2+y2
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for the solution of the Dirichiet problem

V2u=O;
u(x, 0) = f(x), <x

What does the formula give when f(x) 1?
13.7. Find the Green's function for the square in R2

{(x,y): 0 <x <1,0 <y < 1}.

14. Analytic Functions of a Complex Variable and Laplace's
Equation in Two Dimensions

There are important relations between analytic functions of a complex
variable and harmonic functions of two real variables which can be success-
fully exploited in solving boundary value problems for Laplace's equation
in two dimensions. Some knowledge of the subject of complex analysis is
necessary for the understanding of this section. We will only sketch the
basic results and give a simple illustration of the method of conformal
mappings. For a more detailed study of this topic the student should refer
to any applications-oriented book on complex analysis such as Churchill7
(see in particular Chapters 4 and 8—11).

Let z = x + iy and suppose that the function

(14.1) f(z) = u(x,y) + iv(x,y)

is an analytic function of z in some domain fl of R2. The functions

(14.2) u(x,y) = Ref(z), v(x,y) = Imf(z)

are real valued analytic functions of the two real variables x and y; they are
known, respectively, as the real and imaginary parts of f(z). A necessary
condition for analyticity off(z) is that u and v satisfy the Cauchy-Riemann
equations

(14.3) = = —vs, (x,y) E

An immediate consequence of these equations is that each of the functions
u and v satisfies Laplace's equation in fl,

(14.4) + = 0, + = 0; (x, y) E

Thus, the real and imaginary parts of an analytic function are harmonic
functions. For example, the function

f(z) = ez = ex cosy + iex siny,

is an analytic function of z in the whole z-plane, and the real and imaginary
parts

u(x, y) = cos y, v(x, y) = ex sin y

are harmonic functions of x and y in R2.
Two harmonic functions u(x, y) and v(x, y), which are the real and

imaginary parts of an analytic function of a complex variable, are said to be
conjugate harmonic. It can be shown that given a harmonic function u(x, y)
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in a simply connected (no holes) domain fl, its conjugate harmonic in fl
can be determined up to a constant of integration. (See Problem 14.2.)

Besides being rich sources of harmonic functions, analytic functions of a
complex variable play an important role in the study of the two-dimen-
sional Laplace's equation because of the following important property:
Harmonic functions remain harmonic under changes of variables defined
by analytic functions of a complex variable. Indeed, let w = f(z) and z =
F(w) be analytic functions which are inverses of each other. Then the
derivatives dw/dz = f'(z) and dz/dw = F'(w) are non-zero and dw/dz =
1/(dz/dw). Moreover, if z = x + iy, w = u + iv, and if the functions u(x,
y), v(x, y) and x(u, v), y(u, v) are the real and imaginary parts of f(z)
and F(z), respectively, then the relations

(145) u = u(x,y), v = v(x,y)
x = x(u, v), y = y(u, v)

define a (nonsingular) transformation of coordinates (see Problems 14.4
and 14.5). Suppose now that U(x, y) is a C2 function of the variablesx and
y. Then, using the chain rule and the Cauchy-Riemann equations, it can be
shown that

(14.6) + = +

Thus, if U(x, y) is harmonic as a function of x and y, the transformed
function U(u, v) = U(x(u, v), y(u, v)) will also be harmonic as a function
of u and v.

In practice, the above transformation property of harmonic functions
can be very useful. Consider for example the Dirichlet problem for a
domain fl of the (x, y)-plane

V2U=O in
Suppose that the function w = f(z) is defined and analytic in the domain

y

z-plane

Fig. 14.1

U=4 on

x U
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of the z-plane, maps fl to the domain fl' of the w-plane and has an inverse
z = F(w) which is defined and analytic in fl' and maps fI' back to fl. A
mapping of U to U' defined by such a function w = f(z) is said to be
conformal because it preserves the angle between any pair of intersecting
curves in fl; i.e., the image curves in intersect at the same angle. Under
such a conformal mapping, the Dirichlet problem for U(x, y) in is
transformed to a Dirichlet problem for the transformed function U(u, v)
in fl'. If this latter problem can be solved, then the solution of the original
Dirichlet problem can be obtained by returning to the z-plane. We illus-
trate this method with a very simple example.

Example 14.1. Find the solution of the Dirichlet problem for the unit
disc

V2U(r,O)=O

f 1 O<O<irU(1,O)—11

The problem is indicated in the z-plane of Figure 14.2. The function

1+z
(14.7) w =

1—z

is analytic in the circular domain = {z : Izi < 1} and maps fl to the
half-plane = {w:u = Re w > O} of the w-plane, with the boundary of fl
being mapped to the boundary of fl' as indicated in the figure. The trans-
formed problem in the w-plane is

V2U(u,v)0 —oo<v<OO

yt

z -plane

Fig. 14.2

U=

U=

w-plane
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1 1 forU(O,v)1_1 for —°°<v<O.

The bounded solution of this problem is (see 2.20)

(14.8) U(u,v)

To find the solution of the original problem we must return to the z-plane
i.e., we must change variables from u, v to x, y. From (14.7) we easily find
that

1 —x2 —y2 —
U

— (1 — x)2 + y2'
V

— (1 — x)2 +

Therefore, the solution of the original problem is

(14.9) U(x,y) arc tan ( 2).IT \1X —y

The extent of the practical applicability of this method depends of course
on the information that we have at our disposal concerning the transforma-
tion of domains by conformal mappings. Such information can be found for
example in Appendix 2 of Churchill,7 or in the book of Kober,8 which is an
extensive catalogue of conformal transformations.

In theory, at least, the method of conformal mappings can be used to
solve the Dirichiet problem for any simply connected two-dimensional
domain fl with piecewise smooth boundary R2). The celebrated
Riemann mapping theorem (see Ahlfors,9 Section 4.2) asserts that such a
domain can be mapped conformally onto the open unit disc with the
boundary of the domain being mapped to the circumference of the disc.
The Dirichlet problem for can thus be transformed to the Dirichlet prob-
lem for the unit disc. As we know, the solution of this last problem is given
by Poisson's integral.

Problems
14.1. Derive (14.4) from (14.3).
14.2. Let u(x, y) be harmonic in a simply connected domain fl. Use the

Cauchy-Riemann equations to obtain the formula for the conjugate
harmonic

r(x, ii)
v(x, y)

= J
(u5dy —

(so, u)

where (x0, Yo) is any fixed point of fl and the integration is along any
path in fl joining (x0, Yo) and (x, y). Note that if fl is not simply con-
nected (i.e., fl has a hole) then v(x, y) may be multiple-valued.

14.3. Find a conjugate harmonic of u(x, y) = x2 — y2 in R2.
14.4. Show that if u(x, y) and v(x, y) are conjugate harmonic in then

grad u(x, y) and grad v(x, y) are orthogonal at every point of In
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particular, if one of these gradients is # 0 in fl, then the other
gradient is also 0 in and the level curves

u(x, y) = c1, v(x, y) = c2

are orthogonal.
14.5. Show that under the assumptions stated in the text, the Jacobian of

the transformation (14.5) is nonvanishing.
14.6. Derive the relation (14.6).
14.7. Show that as a consequence of the Cauchy-Riemann equations

(14.3), the directional derivative of u in any given direction (cos a,
sin a) is equal to the directional derivative of v in the direction (cos
(a + IT!2), sin(a + IT!2)) which is obtained by rotating the given
direction 90° counterclockwise.

15. The Method of Finite Differences
The method of finite differences is a widely used numerical method for

finding approximate values of solutions of problems involving partial
differential equations. The basic idea of the method consists of approxi-
mating the partial derivatives of a function by finite difference quotients.
Suppose for example that the function u(x, y) is of class C2 in a domain fl of
R2. Then, from Taylor's formula (see for example Taylor,6 pp. 227—228),
we have

u(x + h, y) = u(x,y) + y) + y),

provided that the line segment joining the points (x,y) and (x + h,y)lies in
The point (1, y) is some point on this segment. It follows that

1 h
—-K[u(x +h,y) — u(x,y)]I

and if is bounded in fl, i.e., if there is a constant M > 0 such that

I y) I M for (x, y) E fl,

then the derivative y) at (x, y) E fl can be approximated by the
finite difference quotient

1
+ h,y) — u(x,y)]

with an error which is not larger than (M/2)h. (It is common practice to
say in this case that the error is 0(h).) Thus the smaller the h, the smaller
the error will be. The process of replacing partial derivatives by finite
difference quotients is known as a discretization process and the associated
error the discretization error. Note that several discretizations are possible.
For example, can be also approximated by

— u(x — h,y)] or + h,y) — u(x — h,y)]
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with the error still being 0(h).
We will illustrate the method of finite differences by applying it to the

Dirichlet problem for a bounded domain in R2. The discretization process
approximates Laplace's operator by a finite difference operator in
effect replacing Laplace's equation by a system of linear algebraic equa-
tions involving the values of the desired solution at a finite set of points of
the domain. As we will see, the solution of this system always exists and
can be computed with the aid of various numerical schemes and digital
computers.

The method of finite differences is applicable to domains of very general
shape and in any number of dimensions. It can be used to obtain numerical
approximations of solutions of well-posed problems associated with any
partial differential equation. However, our treatment of the method is only
introductory in nature. The student who is interested in the highly devel-
oped area of numerical methods should consult specialized books such as
Forsythe and Wasow'° or Smith."

Our problem is to find approximate values of the solution u(x, y) of the
Dirichlet problem

(15.1) y) + y) = 0, (x, y) E fl

(15.2) u(x,y) =f(x,y), (x,y) E afl
where fl is a bounded domain in R2 with boundary an consisting of a finite
number of smooth curves, and f is a given function which is defined and
continuous on The method of finite differences will produce, for each h
> 0, a collection of approximate values uh(P) at certain points P of such
that

lim uh(P) u(P).

The procedure is as follows.
For simplicity we pick the coordinate axes so that the domain lies in

the first quadrant. Then, with h being a fixed small positive number, we
draw two families of lines parallel to the x- and y-axes,

x=mh, y=nh; m,n=0,1,2
The domain fl is thus covered by a mesh of squares of side h as shown in
Figure 15.1. The number h is called the mesh size. The points having
coordinates (mh, nh); m, n = 0, 1, 2 are called nodes of the mesh. The
four nodes

E=((m + 1)h, nh), N = (mh, (n + 1)h),

W= ((m — 1)h, nh), S = (mh, (n — 1)h)

are called the neighbors of the node P = (mh, nh). The notation suggests
the location of the neighbor nodes E, N, W, S relative to the central node
P. A node P is said to be an interior node if P and its four neighbor nodes
all lie in P is called a boundary node if P is in while at least one of its
neighbors is not in fl. The dots in Figure 15.1 indicate boundary nodes.

At each point P which is either an interior or boundary node, we will
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Fig. 15.1

compute an approximate value uh(P) of the solution u(P) of problem
(15.1), (15.2). We do this as follows. First, if Pis a boundary node, we let
uh(P) be equal to the value of the data fat the point of nearest to P. If
there is more than one point on which is closest to P, the values off at
these points will not differ very much since f is continuous, and uh(P) can be
set equal to any one of these values. Having assigned the values of Uh at the
boundary nodes, the values of Uh at interior nodes will be determined by
requiring that at each interior node P, Uh should satisfy the approximate
Laplace equation

(15.3) = 0.

In (15.3) is the five-point Laplace difference operator defined by
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(15.4) = [v(E) + v(N) + v(W) + v(S) - 4v(P)].

The difference operator is obtained from the differential operator by
approximating second order partial derivatives by the following difference
expressions: y) is approximated by

1 + h,y) — v(x,y) — v(x,y) — — h,y)
hL h

or, in terms of the node P and its neighbors E, N, W, S, is
approximated by

(15.5) [v(E) - 2v(P) + v(W)].

Similarly, is approximated by

(15.6) [v(N) - 2v(P) + v(S)],

and the sum of the difference expressions (15.5) and (15.6) is IXhv(P).
Assuming that v is of class C4 in fl and that the segments NS and EW are in
fl, it can be shown, using Taylor's formula, that the error in approximating

by IXhv(P) is 0(h2), i.e., there is a constant M> 0 such that

(15.7) —
I

Mh2.

The constant M depends on the bounds of certain fourth order derivatives
of v in fl (Problem 15.1).

Now let I denote the number of interior nodes and let i = 1, 2, ... , I,
denote some indexing of these nodes. At each node P1, equation (15.3) is a
linear equation involving and the values of Uh at the four neighbor
nodes of some of which may be boundary nodes. We have, therefore, a
system of I linear equations in the I unknowns uh(Pj, i = 1, 2, ... , I,
namely

(15.8) = 0 i = 1, 2, ... , I.

After canceling the factor h2 and transferring to the right side values of uk
at boundary nodes, wherever such values appear (remember that these
values of Uh have already been determined), the system (15.8) takes the
form

(15.9) Auh = b.

A is an I x I matrix with entries the numbers 0, 1 or —4; is a column
vector with entries the unknowns uh(Pj, i = 1, 2, ... , I; b is a column
vector with entries either 0 or linear combinations (with coefficient —1) of
previously determined values of at boundary nodes. The precise form of
the matrix A is complicated; it depends on h, the geometry of and the
ordering chosen for interior nodes. In general, A is a large matrix since I
Area (fl)/h2. In spite of the complicated form of system (15.9), it can be
proved rather easily that this system always has a unique solution. The
proof is based on the discrete mean value property
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(15.10) Uh(P) = + Uh(N) + + Uh(S)]

which is possessed by every solution of the approximate Laplace equation
(15.3) at every interior node P (Problem 15.2). In order to prove that the
system (15.9) has a unique solution Uh, we need only show that b = 0 (i.e.,
Auh = 0) implies that Uh = 0. This follows from (15.10) and the way in
which the values of Uh at boundary nodes appear in b (see Problem 15.4).
Thus, in theory at least, we can always solve the system (15.9) to obtain the
set of approximate values uh(Pl) at the I interior nodes.

A more involved use of the discrete mean value property (15.10) shows
that

(15.11) tim uh(P) = u(P),
h -. 0

i.e., the approximate vatues uh(P) obtained by the above procedure con-
verge to the exact vatues u(P) of the solution of (15.1), (15.2) as the mesh
size h shrinks to zero (see Petrovskii).3 It is assertion (15.11), of course,
that justifies the use of this approximation method. In practice the limiting
process (15.11) cannot be carried out. One must be satisfied with carrying
out the approximation procedure for a smatl enough value of h, taking into
account the cost of computing time and the limitation imposed on the size
of the system (15.9) by the computer storage capacity.

From a practicat point of view, the above approximation method teaves
much to be desired. Even writing out the system (15.9) is a rather formida-
ble task. Fortunatety, approximate sotutions of (15.9) can be obtained by a
successive approximation scheme which requires neither the determination
of the matrix A nor the direct solution of a large system of linear equations.
This scheme proceeds as fotlows.

First, it is necessary to setect an appropriate indexing of the interior
nodes. The first interior node P1 must be chosen so that at teast one of its
neighbor nodes is a boundary node. The second interior node P2 must have
as one of its neighbors either the node P1 or a boundary node, and so forth.
After the indexing has been compteted in this manner, we make an initiat
approximation by assigning vatues of uh at the points P1, ... , We denote
the values of this initiat approximation by

(15.12) i = 1, 2, ... , I.

In choosing the initiat vatues (15.12) one usuatty emptoys some sort of
interpolation scheme which involves the previously determined vatues of
u1, at the boundary nodes and takes into account the maximum principle.
The successive approximations will converge, however, regardless of the
particular choice of the initial approximation (15.12).

Suppose now that the vatues of the kth successive approximation

(15.13) i = 1, 2 I,

have been computed and are stored in I storage locations, with the ith
location containing the vatue i = 1, 2, ... , I. The vatues of the
(k + 1)st successive approximation
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(15.14) i = 1, 2, ... I,

are then computed by sweeping through the storage locations from i = 1

to i = I, replacing the current value in the ith location by the mean
value of the four current values at the neighbor nodes of (some of which
may have already been recomputed during the current sweep). This proce-
dure thus utilizes newly computed values as soon as they become available
and are needed. Each sweep of the I storage locations will produce the
values of the next successive approximation. The values of each new
successive approximation more nearly satisfy the discrete mean value
property (15.10) and the system (15.9). It can be shown that

(15.16) lim = uh(P1) i = 1, 2,

(see Petrovskii).3 In practice, of course, one stops the procedure after a
finite number of sweeps, this number being determined, for example, by
comparing the values of successive approximations.

We illustrate the above described methods in the following example.

Example 15.1. Let be the square 0 <x <IT, 0 <y <ir and consider
the Dirichiet problem

(15.17) + = 0, (x, y) E 11

(15.18)
u(0, y) = 0, u('rr, y) = 0; 0 y IT

u(x,0)=x(ir—x), u(x,ir)—0;

We have deliberately chosen this simple problem because it can be easily
solved by the method of separation of variables and Fourier series. The
solution is given by the series

8 1 sinh (2n—l)('rr —y)
(15.19) u(x, y) = — . sin (2n — 1)x.

IT n=1 (2n — sinh (2n — l)ir

Using rather simple estimates on the error resulting from truncation of the
series, the values of the solution can be computed within any specified
degree of accuracy. The results of the method of finite differences can then
be compared with these values.

We will solve the problem (15.17), (15.18) by the method of finite
differences with h = 24IT. With this value of h there are 64 boundary
nodes, all of which lie on the boundary of and 225 interior nodes (I =
225). The interior nodes form an array of 15 rows with each row containing
15 nodes. With the indexing requirements of the successive approximation
scheme in mind, we index the interior nodes starting with the lower-left
node P1 = (24IT, 24IT), moving from left to right along each row. Upon
completion of a row we move up to the left-hand end of the next higher
row.

Since the boundary nodes lie on the boundary of the values of uh at
these nodes are uniquely determined from the boundary condition (15.18).
The linear system (15.9) for the determination of the values of uh at inter-
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ior nodes involves in this case a 15 x 15 coefficient matrix A. For obvious
reasons we will not display the explicit form of this system. The reader,
however, should write out equations (15.8) for the nodes P1 and P2
(Problem 15.7).

We will use the successive approximation scheme for finding approxi-
mate solutions of the system (15.9). The values of the initial approximation
(15.12) are obtained by interpolating between boundary values on each of
the segments

(a) u(x,0) = x(ir — x)

2.6

2.4

2.

1.8

1.6

0. o4 2' 21 3: 35

(c)

(b) uhk)(x, IL)

2.6

2.4

2.2

2.

1.8

1.6

1.4

10

0. .5 1. 1.5 2. 2.5 3. 3.5

(d)

Fig. 15.2
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x=mh, m=1,...,15.
It is easy to see that the resulting initial approximation is

(15.20) n/i) = m(IT — mh)(ir — nh); m, n = 1, ... , 15.

Aided by a digital computer, we now apply the successive approximation
scheme described above, starting with the initial approximation (15.20)
and computing the values of for k = 1, 2 50. Partial results of
these computations are displayed in graphical form in Figure 15.2. This
figure displays the graphs of Uh9X, y), as a function of x, for the four val-
ues y = 0, ir/4, ir/2, 3ir/4. The graphs are in the form of polygonal curves
formed by joining the values of at neighboring nodes with straight
line segments. Figure 15.2(b), for example, displays the successive approxi-
mations Uh9x, 'rr/4) for the values k = 5, 10, ... , 50. The heavy curve in
this figure displays the values u(x, IT/4) of the exact series solution (15.19)
of problem (15.17), (15.18), computed with an accuracy of two decimal
places.

One would surmise from the graphs that the successive approximations
will not converge to u. Of course this is true since u(x, y) is generally

different from uh(x, y) for h > 0. The error between and u which is
apparent in the graphs is composed of two main parts:

y) — uh(x, y) (the successive approximation error)
and

uh(x, y) — u(x, y) (the discretization error).
There are also some roundoff errors present in the calculations themselves,
of course.

Problems
15.1. Prove the error estimate (15.7). [Hint: From Taylor's formula,

h2 h3 h4
v(E) = v(P) + + + +

where E is a point on the segment PE. Write similar formulas for
v(N), v(W) and u(S).]

15.2. Prove the discrete mean value property (15.10).
15.3. Prove the discrete maximum principle: Let uh be a function defined

at all interior and boundary nodes and suppose uh possesses the
mean value property (15.10). Then, if h is sufficiently small, uh
assumes its maximum (and minimum) value at a boundary node and
only at a boundary node unless uh is identically constant.

15.4. Show that the system (15.9) has a unique solution [Hint: Assume
b = 0. If Auh — 0 has a non-zero solution Uh, then uh must have a
maximum non-zero component, which may be assumed to be
positive. From the discrete mean value property (15.10) conclude
that the values of Uh must be positive at certain boundary nodes.
From the special form of b, reach a contradiction.]
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15.5. Obtain the series solution (15.19) of the Dirichiet problem (15.17),
(15.18) using the method of separation of variables and Fourier
series.

15.6. Show that the indexing scheme for the interior nodes in Example
15.1 can be given explicitly by assigning the index i = m + 15(n — 1)
to the node P = (mh, nh); m, n = 1 15, i.e.

= (mh, nh).

15.7. Show that equations (15.8) for the nodes P1 and P2 of Example 15.1
are, respectively,

+ + h('rr — h) — = 0

+ + + 2h('rr — 2/i) — 4uh(Pi)] = 0

where h = 241T.
15.8. Show that the formula for obtaining the (k + 1)st successive approx-

imation at node P17 in Example 15.1 is given by

= + + +

16. The Neumann Problem
We recall the statement of the (interior) Neumann problem given in Sec-

tion 4. Let fl be a bounded domain in R" with smooth boundary 3f1, and
let n = n(x) be the outward unit normal vector to 3f1 at the point x. Let f
be a given function defined and continuous on Find a function u E C°
(1k) which is harmonic in and whose outer normal derivative au/an on

is equal to f, i.e.

(16.1) V2u = 0 in f1,

(16.2) (x) = f(x), x E

We have imposed rather strong requirements on 8f1 andf in order to keep
the discussion at an elementary level. In fact, to get simple proofs of the
two theorems below, we impose the additional assumption that u E C'(fl).

It is easy to see that if u is a solution of (16.1), (16.2) and c is any
constant, then u + c is also a solution. The following theorem asserts that
although there is no uniqueness of solution for the Neumann problem,
there is uniqueness up to an additive arbitrary constant.

Theorem 16.1. Any two solutions of the Neumann problem (16.1),
(16.2) can differ only by a constant.

Proof. The difference ü = u1 — u2 of any two solutions must satisfy
(16.1) and (16.2) with f(x) 0. From the first Green's identity (equation
(1.10) of Chapter VI) with u = w = ü we have

J VaI2dx = 0,

from which it follows that ü must be constant in f1.
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Just as easily we can prove that (16.1), (16.2) can have a solution only if
the data f satisfy the condition

(16.3) ff(x)do- = 0.

Theorem 16.2. Condition (16.3) is necessary for the existence of a
solution of the Neumann problem (16.1), (16.2).

Proof. If u is a solution of (16.1), (16.2), then using the Divergence
Theorem we must have

0
= J

V2udx
= J

VVudx
= J

Vundo-
=

do- = Jf(x)do.

The physical interpretation of u as the steady state temperature in with
given heat flux on 911 explains the necessity of condition (16.3), which
requires that the total heat flux across 911 must be zero. If this were not the
case, there would be a net change in the heat energy contained in fl and
such a change is impossible under steady state conditions.

Example 16.1. Consider the Neumann problem for the unit disc in R2

(16.4) V2u=O

(16.5) 0) = f(0), 0
3r

The necessary condition (16.3) for the existence of a solution is, in this
case,

(16.6) Jf(0)dO = 0.

The problem can be solved by the method used in Section 7 for solving the
Dirichlet problem for the disc. We look for a solution in the form of a
superposition of the harmonic functions (7.3),

(16.7) u(r, 0) =
+

cos nO + sin nO).

The boundary condition (16.5) will be satisfied if

(16.8) f(O)
=

(nAn cos nO + sin nO), —ir 0 ir.

Assuming for simplicity that f is continuous and has sectionally continuous
derivative on the boundary of the disc, f can be represented by its Fourier
series

f(O) = + cos nO + sin nO), —ir 0 ir.
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Since f must also satisfy condition (16.6), the constant term a0/2 will be
zero (why?). Therefore (16.8) will be satisfied if

(16.9) = = —i-- Jf(0) cos nO dO, n = 1, 2,...,

(16.10) = =
J

f(O) sin nO dO, n = 1, 2

We conclude that the solution of (16.4), (16.5) is given by (16.7) with
n = 1, 2, ... , given by (16.9) and (16.10), and A0 being

arbitrary. The solution has been determined up to an arbitrary constant, in
accordance with Theorem 16.1.

We will not go any further into the study of the Neumann problem. We
close this section by summarizing the basic results for the two-dimensional
problem. It can be shown, using the method of inversion with respect to a
circle, that Theorems 16.1 and 16.2 are also valid for the Neumann
problem for an exterior domain provided that the complement of
contains a disc and u is required to satisfy the condition at infinity that u
remains bounded. Moreover, using the methods of potential theory, it can
be shown that condition (16.3) is sufficient as well as necessary for the
existence of solution of either the interior or exterior Neumann problems.
In fact, if is a simply connected domain, the Neumann problem for can
be transformed to a Dirichlet problem for provided condition (16.3) is
satisfied. The method of transformation exploits the properties of conju-
gate harmonic functions, in particular the property described in Problem
14.7 (see Problem 16.2).

Problems

16.1. Solve the Neumann problem (16.4), (16.5), if f(0) 101 —(Tr/2),

0 IT.

16.2. Let be a simply connected domain in R2 with smooth boundary
and suppose that u(x, y) is a solution of the Neumann problem
(16.1), (16.2) satisfying condition (16.3). Let v(x, y) be conjugate
harmonic to u(x, y) and suppose that both uand v are in Use
Problem 14.7 to show that

r(XY)

(16.10) v(x, y) = v(x0, Yo)
+ J

f(s)ds, (x, y) E 81k,
(xoYo)

where (x0, y0) is any fixed point of and the integration is carried
along in the counterclockwise direction. Show that (16.10) de-
fines v on as a continuous single valued function. Thus v is a solu-
tion of a Dirichlet problem. Once v(x, y) is found, the solution
u(x, y) of the original Neumann problem is determined as the
conjugate harmonic of v (x, y). Note that this method determines u
up to an arbitrary additive constant.

16.3. Use the method described in Problem 16.2 to find the solution of
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V2u=O

9u—(1,O)=cos2O,
ar

16.4. Use the Taylor expansion

log(1 — z) = —
n=1 fl

IzI<1

to sum the series (16.7), with coefficients given by (16.9),
(16.10), and obtain the integral representation

u(r, 0) = - log [1 - r2 - 2r cos (0 -

for the solution of the Neumann problem (16.4), (16.5).
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CHkPTER VIII

The wave equation

In this chapter we present a detailed study of the wave equation, which is
the most important example of a linear partial differential equation of
hyperbolic type. In Section 1 we describe some simple solutions of the
equation, including solutions known as plane waves and spherical waves
which physically represent traveling waves with plane or spherical profiles.
Sections 2 through 6 are devoted to the study of the injtial value problem.
In Section 2 this problem is carefully defined and illustrated by repre-
sentative physical problems in one, two and three space dimensions. In
Section 3 we derive an inequality which must be satisfied by every solution
of the wave equation, and which involves certain integrals representing the
energy of the physical wave described by the solution. The method of
derivation is known as the energy method and the inequality is known as
the domain of dependence inequality. It follows from the inequality that
the value of the solution of the initial value problem at any given point of
space-time depends only on the values of the initial data on a certain por-
tion of space known as the domain of dependence. The details are given in
Section 4, where the uniqueness of solution of the initial value problem and
the conservation of the total energy of the solution are also proved. In
Section 5 it is shown that Kirchhoff's formula gives the solution of the ini-
tial value problem in three space dimensions. The method of descent
(going from three to two and one dimensions) is then used to obtain the
corresponding solution in two and one space dimensions. In Section 6 the
properties of the solution of the initial value problem in various space
dimensions are discussed. It is shown that in three space dimensions the so
called Huygens' principle holds, a consequence of which is the sharp
propagation of signals. In two space dimensions Huygens' principle does
not hold and consequently propagating signals always have a decaying
trailing edge. This phenomenon is known as diffusion of waves. Sections 7
through 10 are devoted to the study of the initial-boundary value problem.
In Section 7 the uniqueness of solution is proved by the energy method,
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and the reflection of waves by plane boundaries is discussed. The vibra-
tions of a string and of a rectangular membrane are studied in Sections 7
and 8, respectively. The method of solution involves separation of varia-
bles, solution of an associated eigenvalue problem, and Fourier series ex-
pansions of the initial data. This method is generalized in Section 10, where
the properties of an eigenvalue problem for the Laplacian operator are
summarized, and the fundamental theorem concerning the representation
of functions by eigenfunction expansions is stated. This general method is
once more illustrated by applying it to the study of vibrations of a circular
membrane.

1. Some Solutions of the Wave Equation. Plane and
Spherical Waves

The wave equation

a2u a2u a2u
(1.1) —+...+———=O34 84 at2

is the simplest and most important partial differential equation of hyper-
bolic type. We have seen in Chapter V that every second order hyperbolic
equation may be reduced by a transformation of coordinates to a canonical
form which, at least at any given point, has principal part the same as that
of the wave equation. This would seem to indicate that most important
properties of hyperbolic equations are shared by the wave equation. It
turns out that, with some exceptions, this is actually true. Therefore, for
the mathematician who is interested in the theory of hyperbolic equations,
a careful study of the wave equation is essential. For the physical scientist,
engineer and applied mathematician, the reason for studying the wave
equation is obvious since this equation describes many wave propagation
and vibration phenomena (see Chapter VI, Section 4).

A solution of the wave equation (1.1) is a function of n + 1 variables x1,
and t. The variables x1, ... , are called the space variables and t is

called the time variable. We will use the notationx = (x1, ... , wherex is
a point in the n-dimensional space R'1 known as the x-space. Equation (1.1)
is known as the n-dimensional wave equation where n indicates the num-

n=1 n=2

Fig. 1.1
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x = (x,

Fig. 1.2

ber of space variables. We emphasize that u is a function defined in the
space known as the (x, t)-space. For n = 1 and n = 2 we can draw
figures of the (x, t)-space as shown in Figure 1.1. However for n 3 this is
no longer possible. For this reason it is sometimes convenient to represent
the (x, t)-space by representing the x-space by one axis as shown in Figure
1.2.

In this section we describe some solutions of the wave equation.
Let = ..., be a unit vector in so that

Then for each fixed t and each constant c, the equation

represents a plane in the x-space The vector is normal to this plane
and as t increases, the plane travels in the direction of with speed 1. (To
see this consider the special case = (1, 0, ... , 0).) Now, let F(y) be a C2
function of the single variable y. Then it is easy to verify that

u(x1 t) = + + — t)

is a solution of the wave equation (1.1) (see Problem 1.1). The value of u
on the traveling plane (1.3) is constant and equal to F(c). For this reason,
solutions of the form (1.4) are known as plane waves. We illustrate plane
wave solutions of the wave equation with examples for n = 1, 2 and 3.

For n = 1, equation (1.1) is the one-dimensional wave equation

32u t92u

34 at2
0.

Condition (1.2) is = 1 and the only possible values of are = + 1
and = —1. The corresponding traveling planes are, in this case, traveling
points in R' given by
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(1.6) x1—t=c

and

(1.7) x1+t=c,
respectively. (1.6) describes a point traveling in the positive x1 direction
with speed 1, while (1.7) describes a point traveling in the negative x1
direction with speed 1. The corresponding plane wave solutions are

(1.8) u(x1, t) = F(x1 — t)

and

(1.9) u(x1, t) = G(x1 + t)

where F and G are arbitrary C2 functions of a single variable. Solutions of
the form (1.8) represent waves traveling in the positive x1 direction with
speed 1. Let us suppose for example that F(y) is the "blip" function shown
in Figure 1.3. Figure 1.4 shows the graph of the solution (1.8) as a function
of x1 for several values of t. Recalling that the one-dimensional wave
equation (1.5) describes the motions of a stretched string which lies along
the x1-axis when in equilibrium, the drawings in Figure 1.4 may be viewed
as photographs, at the indicated instants of time, of a wavelet traveling
along the string. Figure 1.5 shows the (x1, t)-plane on which the solution
(1.8) is defined. The shaded strip indicates the region where u(x1, t) 0.
Solutions of the form (1.9) represent waves traveling in the negative x1
direction. The student should draw figures corresponding to Figures 1.4
and 1.5 for (1.9) taking G(y) = F(y) as shown in Figure 1.3 (see Problem
1.2).

For n = 2 equation (1.1) is the two-dimensional wave equation

32u t92u t92u
(1.10)

34 3.4 at2

There are infinitely many unit vectors = in R2. For example =
is such a vector and the corresponding traveling "plane" is,

in this case, a traveling line in R2 given by

(1.11) — t = c.

F(y)

Fig. 1.3
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1 I — I

(1.11) describes a line in the x-space R2 traveling in the direction of its
normal 1/\r2) with speed 1. The corresponding plane wave solu-
tions of (1.10) are

u(x1, x2, t) = F xi + x2 —

where F is an arbitrary C2 function of a single variable. Further study of
this example is indicated in Problem 1.3.

I U

xI

t=o t=1

U
U

t=2
Fig. 1.4

3

x1

Fig. 1.5
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For n = 3 equation (1.1) is the three-dimensional wave equation

32u 32u 32u 32u
(1.13)

at2

Again there are infinitely many unit vectors = (ti, in R3. For
example one such vector is (1, 0, 0) and the corresponding traveling
planes are given by

(1.14) x1 — t = c.

(1.14) describes a plane in the x-space R3 traveling in the direction of its
normal (1, 0, 0) with speed 1. The corresponding plane wave solutions of
(1.13) are

(1.15) u(x1, x2, x3, t) F(x1 — t).

Further study of this example is indicated in Problem 1.4.
In Chapter V, Section 7, we have seen that every solution of the one-

dimensional wave equation can be expressed as the sum of two plane waves
of the form (1.8) and (1.9). However, for n 2 there are solutions of the
wave equation which are not finite sums of plane waves. Among these
solutions there is another class of simple solutions known as spherical
waves. A spherical wave is a solution of the wave equation whose value (for
each fixed t) is constant on spheres in the x-space centered at the origin. In
order to study spherical waves we introduce spherical coordinates in the x-
space. The Laplacian operator in terms of spherical coordinates in is
given by formula (2.3) of Chapter VII. Hence, the wave equation (1.1),
using spherical coordinates in the x-space R7, takes the form

1 8/ 3u\ I 32u
(1.16) 1 +— = 0

3r \ t3rI r2

where is a second order partial differential operator involving differen-
tiations with respect to the angular variables only. By definition, a spherical
wave is a solution of (1.16) which depends only on r and t and does not
depend on angular variables. Therefore a spherical wave is a function u =
u(r, t) which satisfies the equation

I 3 / 8u\ 32u
0.

ar \ t3rI 8t2

Equation (1.17) is known as the equation of spherical waves.
For n = 3 the equation of spherical waves is

(1.18) = 0 (n = 3).r28r\ 3r1 8t2

This equation can be simplified by introducing the new dependent variable
w = ru. Substituting into (1.18), the equation for w is found to be

(1.19)
at2
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which is the one-dimensional wave equation. We already know that every
solution of (1.19) can be expressed as the sum of solutions of the form
F(r — t) and G(r + t), where F and G are C2 functions of a single variable.
Therefore every solution of (1.18) can be expressed as the sum of solutions
of the form

(1.20) u(r, t)

= F(r- t)

and

G(r + t)
(1.21) u(r, t) =

r

Solutions of the three-dimensional wave equation of the form (1.20)
represent expanding (or outgoing) spherical waves, while solutions of the
form (1.21) represent contracting (or incoming) spherical waves. The
speed of expansion or contraction of these spherical waves is 1.

For n = 2 equation (1.17) is

1 8 / 3u' t32u
(1.22) (n=2).r3r\ 3rJ 3t2

Equation (1.22) is also known as the equation of cylindrical waves (see
Problem 1.7). This equation is not as easy to solve as (1.18). Solutions may
be obtained by the method of separation of variables described below (see
Problems 1.8 and 1.9).

Let us apply the method of separation of variables to the wave equation.
We look for solutions of (1.1) of the form

(1.23) u(x, t) = v(x)T(t)

where v(x) is a function of the space variables and T(t) is a function of
only. Substituting (1.23) into (1.1) and separating the variables we obtain

82v(x) 32v(x)

(1 24) +
+ ()

v(x) T(t)

Since the left-hand side is a function of x only, while the right-hand side is a
function of t only, the two functions must be constant functions and in fact
equal to the same constant. Hence (1.24) is equivalent to

32v(x) 32v(x)
+...+ T (t)

v(x)

or to the pair of equations

32v 32v
(1.25)

8x1

(1.26) T" + jiT = 0
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where j.t is some constant. Equation (1.25) is an important equation of
elliptic type and is known as the reduced wave equation. Equation (1.26) is
a simple ordinary differential equation.

Let us consider first the case u> 0, say = a2, a > 0. In this case (1.26)
has two linearly independent solutions

cos a)t, sin cot

which are the real and imaginary parts of the complex valued solution
Solutions of the reduced wave equation (1.25) can be found by further
separation of variables as was done for Laplace's equation in Chapter VII,
Section 2. We do this here for n = 3 and leave the case n = 2 for the
problems. In terms of spherical coordinates equation (1.25) becomes

(1.27) A3v + co2v = 0.

We look for solutions of this equation in the form

(1.28) v(r, 0, 4) = R(r)Y(0, 4).
Substitution of (1.28) into (1.27) and separation of variables yields

A3Y

__________

=

where y is the separation constant. The separated equations are

(1.29) A3Y+yY0
(1.30) r2R" + 2rR' + (co2,2 — y)R = 0.

As discussed in Chapter VII, Section 2, equation (1.29) has smooth
solutions only when y is equal to one of the values

(1.31) = k(k + 1), k = 0, 1, 2

For each such Yk there are 2k + 1 linearly independent solutions of (1.29)
denoted by

(1.32) (0, 4), 1, 2, ... , 2k + 1,

which are known as the Laplace spherical harmonics. For each )'k'equation
(1.30) becomes

(1.33) r2R" + 2rR' + [co2r2 — k(k + 1)]R = 0.

In terms of the new dependent variable

(1.34) w = r"2R

equation (1.33) becomes

(1.35) w = 0.
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Equation (1.35) is Bessel's equation of order k + 1/2 with parameter It
has two linearly independent solutions (Bessel's functions),

(1.36) and

where

(z12y+2m
(1.37) =

m=O m + 1)

with F denoting the gamma function. The solutions (1.36) are distin-
guished by their behavior at the origin; Jk+112(ar) behaves like near r
= 0 while J_(k+l,2)(ar) behaves like near r = 0. Consequently, for
each k = 0, 1, 2 , equation (1 .33) has two linearly independent solu-
tions,

(1.38) r"2Jk+l,2(a)r) and r'J_(k+112)(a)r)

which behave, respectively, like nJc and near r = 0. The corresponding
product solutions of the reduced wave equation (1.27) are

Y(ke)(O, 4) and r'J_(k+l,2)(a)r) }5P(O, 4)),
(1.39)

{k=012... €=12... 2k+1.

Thus, by the method of separation of variables we have found the following
collection of solutions for the three-dimensional wave equation,

—1/2 J Jk+112(a)r) 1
fcos at

(1.40) r
tJ_(k+l,2)((1)r)J

' cb)
sin cOt

k=O,1,2,...;
Because of the harmonic dependence on t, these solutions are referred to
as oscillatory solutions of the three-dimensional wave equation.

Nonoscillatory solutions correspond to the case /L < 0, say /L = (i)>
0. Two linearly independent solutions of the time equation are, in this case,

and and the equations corresponding to (1.27), (1.29) and (1.30)
are obtained by replacing cO2 by The equation corresponding to (1.35)
is

(1.41) w =

Equation (1.41) is Bessel's equation with purely imaginary argument (see
Watson)'. It has two linearly independent solutions (Bessel's functions),

(1.42) lk+112(cor) and I_(k+l,2)(cOr),

where

12\v+2m
(1.43) =

J

1)
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Problems

1.1. Show that (1.4) is a solution of the wave equation (1.1).
1.2. Draw the figures corresponding to Figures 1.4 and 1.5 for the

solution (1.9), taking G(y) = F(y) as shown in Figure 1.3.
1.3. LetF(y) be the blip function shown in Figure 1.3. In the (x1, x2) plane

draw the lines where (1.12) has its maximum value and the strips
where u(x1, x2, t) # 0 fort = 0, 1, 2, 5.

1.4. Let F(y) be the blip function shown in Figure 1.3. In the (x,, x2, x3)-
space draw the planes where (1.15) has its maximum value and the
slabs where u(x1,x2,x3,t) 0 fort = 0,1,2,5.

1.5. Show that in the (x, t)-space the planes (1.3) are characteristic
with respect to the wave equation (1.1). Also show that the plane
wave solutions (1.4) are constant on these planes.

1.6. Derive (1.19) from (1.18).
1.7. In R3 introduce cylindrical coordinates

x,=pcosO, x2=psinO, x3=z,
and show that the three-dimensional wave equation becomes

1 3 / 3u\ 1 82u 32u 32u
(1.44) ——Ip—)+——+———-—O.

ap \ 3p1 p2 ô02 3z2 8t2

If u does not depend on 0 and z, equation (1.44) becomes equation
(1.22) (with r = p). Why is (1.22) called the equation of cylindrical
waves?

1.8. Apply the method of separation of variables to the reduced wave
equation (1.25) for n = 2. Consider only the case u.> 0, say ji =

> 0. Introduce polar coordinates and look for solutions of the form
v(r, 0) = R(r)®(0) with the periodicity conditions 0(0) =
0'(O) = 0'(2ir). Show that the equation for R is Bessel's equation of
order n with parameter v,

r2R" + rR' + — n2)R = 0,

where n = 0, 1, 2 Derive the following solutions for the two-
dimensional wave equation,

nOT otT = 2
sin nOJ sin atj

where is Bessel's function of order n and is Bessel's function of
the second kind of order n (see Watson)'.

1.9. From the solutions of the two-dimensional wave equation obtained
in Problem 1.8, determine those which are independent of 0. These
are solutions of the equation of cylindrical waves (1.22).

1.10. The solutions (1.40) with k = 0 are spherically symmetric 4)
= 1) and hence they must be of the form (1.20) or (1.21). Show that
the combinations

[r"2J112(ar) ± ir112J_112(ar)]ebo(

are of this form. [Hint: Compare the series expansions of cos z and
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sin z with those of J112(z) and J_112(z) and use the fact that F(m + 1/2)
= to obtain the formulas

J112(z) = sin z and J_112(z) = cos z.]

2. The Initial Value Problem
The basic problem associated with the wave equation

82u 32u 32u
(2.1) —+...+———=O,34 3t2

is the initial value problem, or Cauchy problem. This problem asks for the
solution u(x1 t) of (2.1) which satisfies the given initial conditions

(2.2) u(x1 0) =

(2.3) (x1 0) = ... ,

The functions 4. and q, known as the initial data, are given functions which
are defined in the x-space at t = 0. The plane t = 0 in the (x, t)-space R"
is known as the initial surface or initial manifold of the problem.

Although we are mainly concerned with the cases n = 1, n = 2 and n =
3, much of the discussion will be carried out for general n. However, even
when the discussion is for general n, it is convenient to visualize the
problem under consideration for the special case n = 2. For n = 2, the
initial value problem asks for the solution u(x1, x2, t) of the two-dimen-
sional wave equation

32u 32u 32u
(2.4) —+—————--=0

at2

satisfying the initial conditions

(2.5) u(x1, x2, 0) = 4(x1, x2)

(2.6) (x1, x2, 0) = ifi(x1, x2).

The solution is to be defined in the three-dimensional (xb x2, t)-space. The
initial conditions (2.5) and (2.6) are specified on the initial surface t = 0
which, in this case, is the (x1, x2)-plane.

Our purpose is to show that, under certain conditions on the initial data
4) and q, the initial value problem (2.1)—(2.3) is well-posed. We also want
to find a formula for the solution of the problem. We already know from
the Cauchy-Kovalevsky theorem that if 4 and q are analytic at the origin of
the x-space, then the problem has a unique solution which is defined and
analytic in a neighborhood of the origin of the (x, t)-space. Here, however,
we want to enlarge the scope of our study beyond this limited result. We
want to solve the problem "in the large"; i.e., for all (x, t) in and not
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just in a neighborhood of the origin. Also we want to eliminate the
assumption of analyticity on 4) and q.

Concerning our aim to solve the initial value problem in the large, it
should be noted that it is enough to solve the problem only in the upper
half-space t 0. The reason for this is that the problem for the lower half-
space t 0 can be reduced to the problem for the upper half-space by
making the transformation t' = —t and noting that under this transforma-
tion the wave equation (2.1) remains unchanged. (This is not true for the
heat equation!) In what follows we will only study the "forward" problem
which asks for the solution of the initial value problem (2.1)—(2.3) fort
0. This of course is the problem that most often arises in physics.

It should also be noted that the initial value problem with initial surface
the plane t = t° can be immediately reduced to the problem (2.1), (2.2),
(2.3) with initial surface t = 0 by making the transformation t' = t — t°.
Obviously, under this transformation the wave equation remains un-
changed.

We have already seen in problems of previous chapters of this book that
the initial value problem for the one-dimensional wave equation,

(2.7) xER' t>0
3x2 at2

(2.8) u(x, 0) = x E R',

(2.9) (x, 0) = ifi(x), x

is a well-posed problem and that its solution is given by the formula

1 1
rX+t

(2.10) u(x, t) = — [4(x + t) + 4(x — t)] +
— J

t/J(T)dr.
2 2 x—t

Existence, uniqueness and the derivation of formula (2.10) (assuming that
4 E C2(R') and q E C'(R')) were the subject of Problem 4.1 of Chapter
VI. Indeed, existence can be proved by simply verifying that (2.10) satisfies
(2.7)—(2.9). Uniqueness of the solution of the problem follows from the
fact that the general solution of (2.7) is u(x, t) = F(x — t) + G(x + t) and
from the fact that the initial conditions (2.8) and (2.9) uniquely determine
the functions F and G and yield (in a unique way) formula (2.10) for the
solution of the problem. For the initial value problem with n > 1 we cannot
follow this simple procedure to prove existence and uniqueness and obtain
a formula for the solution since we do not have a simple formula for the
general solution of the wave equation in more than one space variable.
Instead, what we will do is first prove uniqueness for general n by using a
method known as the energy method. Then we will write down the formula
for the solution of the problem for n = 2 and n = 3 and will verify by
direct computation that it satisfies the wave equation and the initial
conditions. This will prove existence. Finally we will prove continuous
dependence on the initial data using the formula for the solution of the
problem.

In Section 4 of Chapter VI we described some physical phenomena
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which are governed by the wave equation. In studying the initial value
problem for the wave equation it is useful to keep in mind an associated
physical problem. The problem of determining the small vibrations of an
infinite stretched string, given its initial displacement and velocity, leads
to an initial value problem for the one-dimensional wave equation. The
problem of determining the small vibrations of an infinite stretched mem-
brane, given its initial displacement and velocity, leads to an initial value
problem for the two-dimensional wave equation. Finally, the problem of
determining the propagation of sound (here u represents the deviation from
ambient pressure) in an infinite atmosphere, given the initial distribution of
u and au/at, leads to an initial value problem for the three-dimensional
wave equation. One may object to all these examples as being unrealistic
since there are no infinite strings, membranes or atmospheres. However,
as we will see, the presence of boundaries in the x-space (corresponding to
boundaries of a string, membrane or atmosphere) affects u(x, t) only when

T, where T = T(x) depends on the distance of x from the boundary.
This is due to the fact that disturbances propagate with finite speed. Thus,
when boundaries are present, solving the initial value problem is still
relevant but only over finite intervals of time.

Problems

2.1. Consider the initial value problem (2.7)—(2.9) for the one-dimen-
sional wave equation.
(a) Suppose that 4 = = 0 in some interval of length €. Up to what

time t can you be sure that u = 0 at the center of the interval?
(b) Suppose that 4) = = 0 outside the interval 1. Up to what

time can you be sure that u = 0 at (i)x = 3, (ii)x = 10, and (iii)x
= —5?

2.2. Write down the formula for the solution of the initial value problem

xER', t>0,

u(x, 0) = 4)(x), U1(X, 0) = x E R'.

Then answer the questions of Problem 2.1 for this problem.
2.3. Consider the initial value problem (2.7)—(2.9) and suppose that 4) =

= 0 outside the interval €. Show that at any fixed point x°, u is
eventually constant. More precisely, show that there are numbers T =
T(x°) and U such that u(x°, t) = U fort > T(x°). Find T(x°) and U.

2.4. Consider the initial value problem (2.7)—(2.9).
(a) Find u(IT, t) and u(—IT, t) for t = 0, iii2, iT, 342, 2iT, if

IT
cosx for IxI<—

0 for

for xER'.
(b) Follow the instructions of part (a) with 4) and interchanged.
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[Use formula (2.10). Ignore the fact that the initial data are not
smooth at x = ±IT/2. We will discuss this difficulty later on.]

3. The Domain of Dependence Inequality. The Energy
Method

In this section we derive an important inequality which is satisfied by
solutions of the wave equation. This inequality, known as an energy
inequality, yields immediately the uniqueness of solution of the initial value
problem. It also yields the important fact that the value of the solution at a
point depends only on the values of the initial data on a finite part of the
initial manifold. For this reason, the inequality is called the domain of
dependence inequality.

We will first explain the inequality and then we will give its proof. The
method of proof is known as the energy method. The applications and
explanation of the use of the word energy will be given in the next section.

Let us first recall some facts concerning characteristic directions and
characteristic cones for the wave equation (see Example 2.10 of Chapter
V). If v = (vi, ..., is a unit vector in describing a characteristic
direction, then by definition,

(3.1)

Moreover, since v is a unit vector, we must have

1
(3.2) v1=

Thus the normal to a characteristic surface must always make a 45° angle
with the t-axis. Now let (x°, t°) = (x10, ... , t°) be a fixed point in
The equation

(3.3) (x1 — x?)2 + . + — — (t — t°)2 — 0

describes a double conical surface with apex at (x°, t°), axis parallel to the t-
axis and generators making a 45° angle with the t-axis. The surface (3.3) is
characteristic with respect to the wave equation and is known as the
characteristic cone with apex at (x°, t°). The upper part, that is, the part for
which t t°, is known as the forward characteristic cone with apex at (x°, t°),
while the lower part (t t°) is known as the backward characteristic cone
with apex at (x°, t°). (See Fig. 3.1 where the forward and backward cones
are shown for n = 2.)

Consider now the backward characteristic cone with apex at
(x°, t°) E The surface and interior of this cone are given by the
inequalities

(3.4) (x1 — x?)2 + + — — (t — t°)2 0, t t°.

Let T be any number t° and consider the plane

(3.5)

in The plane (3.5) is actually the x-space at t = T. The part of this
plane cut off by the backward characteristic cone with apex at (x°, t°) is the
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B(x°, t°), t = 0

set of points (x, t) satisfying both (3.4) and (3.5), and is therefore given by

(3.6) (x1 — x?)2 + + — (t° — T)2, t = T.

This set is the closed ball B(x°, t° — T) (with center at x° and radius t° — T)
in the x-space at t = T. Figures 3.2, 3.3 and 3.4 illustrate these cut-off
balls for n = 1, n = 2 and general n, respectively. For n = 1, 2 and 3 the
balls are, respectively, intervals, discs and solid spheres. In Figure 3.4, the
x-space is represented by one axis and consequently the balls are repre-
sented by intervals.

Theorem 3.1. (Domain of dependence inequality.) Let (x°, t°) be a point
in with t°> 0, and let Cl be the conical domain in bounded by the
backward characteristic cone with apex at (x°, t°) and by the plane t = 0.

forward cone

x2

Fig. 3.1

j0, t°)
B(x°, t° —T), t T

Fig. 3.2
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Suppose that the function u is in C2(fl) and satisfies the wave equation in
ft Then for any number T, 0 T t°, the following inequality is satisfied:

(3.7) f
J

+ ... + + dx.

Note that the regions of integration in the left and right sides of inequal-
ity (3.7) are, respectively, the balls cut off from the planes t = T and t = 0
by the backward characteristic cone with apex at (x°, t°) as shown in Figures
3.2—3.4, and the corresponding integrands, which are the sums of the
squares of the first derivatives of u, are evaluated, respectively, at t = T and
t = 0.

Proof of Theorem 3.1. We give the proof for n 2, although the proof
for general n is not really different (see Problem 3.2). The method of
proof, known as the energy method, is based on the differential identity

(3.8) + — u1g) = — + +

which is easy to verify (see Problem 3.1). Let be the part of below the
plane t = T (see Fig. 3.5) and let CT be the part of the backward
characteristic cone with apex at (x10, x20; t°) which lies between the planes
= 0 and t = T. Integrating (3.8) over 11T and using the fact that u satisfies
the wave equation in we obtain

(3.9) 0
=

+ — + + dx1dx2dt.

Now the intergrand in (3.9) is the divergence of the vector field
— + + u12)) in the (x1, x2, t)-space. Applying the

divergence theorem to (3.9) we obtain

(x1°, x20; t°)

t° -T),

V

Fig. 3.5

+ ... + + u1dx

B(x10, x20; t°), t = 0
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(3.10) 0
= f + — + + do-

ÔflT

where is the boundary of do- is the element of surface on and v
= (v1, v2, is the unit normal vector on in the direction exterior to
Since the boundary consists of three parts, the top and bottom discs
and the conical surface CT, we split the integral in (3.10) into the sum of
three integrals. On the top disc, x E B(x10, x20; t° — T), t = T and v = (0, 0,
1). Hence the integral on the top disc is

(3.11)
— - T)

+ + It=T dx1dx2.

On the bottom disc,x E B(x10,x20;t°),t = 0 and v= (0,0, —1). Hence the
integral on the bottom disc is

(3.12) + + 11=0 dx1dx2.

On the conical surface CT the exterior normal v = (v1, v2, defines a
characteristic direction and hence must satisfy the relations

(3.13) + i4 = =

Hence the integral on CT is

'CT
+ — + +

=
'CT

+ — + +

=
'CT

+ 2UtUx2PtP2

— — — — u?vfldo,

where both relations in (3.13) were used. Now, recognizing the integrand
in the last integral as the negative of the sum of two squares, the integral on
CT is

(3.14) — u1v1)2 + — UtV2)2] do.

Since the integral in (3.10) is equal to the sum of the integrals (3.11),
(3.12) and (3.14), equation (3.10) becomes

0 =
— f + + ufl I t=T dx1dx2

+ + + u?)
I

t=o dx1dx2

—
— UtP1)2 + UtP2)2]
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Finally, since the third quantity in this equation is always (why?), we
obtain the inequality

jB(xr,4,:—T)
(3.15) r

J
+ +

which is inequality (3.7) for n = 2.

Problems

3.1. The differential identity (3.8) expresses the product of 2u1 and the left
side of the wave equation as the divergence of a vector field in (Xb X2,

t)-space.
(a) Verify (3.8) by performing the indicated differentiations on the

right side to obtain the left side.
(b) Derive (3.8) by expressing each term on the left side as the

difference of two derivatives [Hint: = —

= —

3.2. Prove Theorem 3.1 for general n. First verify the differential identity
corresponding to (3.8) for general n,

(3 16)
+ + — u11)

= + •.. + — + + + u?)1.

3.3. Let V stand for the "differentiation vector" in the x-space only,

axfl

(a) Show that the differential identity (3.16) can be written in the
form

(3.17) 2u1(V2u — Utt) V(2u1Vu) — (IVuI2 +

(b) Show that the domain of dependence inequality (3.7) can be
written in the form

(3.18) f (IVuI2 + dx f (IVuI2 + It=o dx.
A(xOto)

3.4. The p.d.e.

82u 82u 82u
(3.19) +—j——j-—q(x)u 0

3t

arises in the study of wave propagation in a nonhomogeneous me-
dium. The function q(x) depends only on the space variables and is
non-negative. Under the assumptions of Theorem 3.1, with u satisfy-
ing (3.19) instead of the wave equation, derive the domain of depend-
ence inequality
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f + + + + qu2) It=T dx

(3.20)
B(x°,z°-T)

J
(4 + ... + + u? + qu2) 11=0 dx.

4. Uniqueness in the Initial Value Problem. Domain of
Dependence and Range of Influence. Conservation of Energy

In this section we apply the domain of dependence inequality to the
question of uniqueness in the initial value problem,

82u 82u 82u xER't>O
8t2

(4.2) u(x, 0) = 4(x), u1(x, 0) = x E R'.

Theorem 4.1. Let (x°, t°) be a point in with t°> 0 and let Cl be the
conical domain in bounded by the backward characteristic cone with
apex at (x°, t°) and by the plane t = 0. Let u be a function in C2(Cl)
satisfying the wave equation in Cl and suppose that u and vanish on the
base of Cl, i.e.

u(x, 0) = u1(x, 0) = 0 forx E B(x°, t°).

Then u vanishes in Cl.

Proof. Since u(x, 0) -= 0 forx E B(x°, t°), we also have 0) =
0) = 0 for x E B(x°, t°). Hence the integral on the right side of the

domain of dependence inequality (3.7) is equal to zero. Since the integral
on the left side is non-negative, it must also be equal to zero, i.e.

(4.3) f + + + U?) Il=T dx = 0
B(x°,t°—T)

for every T, 0 T t°. Now the integrand in (4.3) is continuous and non-
negative and hence it must be equal to zero. We conclude that

T) = = T) = U1(x, T) = 0

for x E t° — T), 0 T t°. This means that all first order partial
derivatives of u(x, t) vanish in Cl and hence u must be constant in Cl. By
continuity, u must be constant in and since U = 0 on the base of Cl, U = 0

everywhere in Cl.

Theorem 4.1 yields immediately the following uniqueness result.

Corollary 4.1. Let the point (x°, t°) and the conical domain Cl be as
described in Theorem 4.1. Suppose that there are two functions u1 and u2
which are in C2(Cl), satisfy the wave equation in Cl and on the base of Cl, u1
= u2 and 8u1/8t = 8u2/öt. Then U1 u2 in Cl.

Proof. Let ü = u1 — u2. It is easy to check that ü satisfiçs all the
assumptions of Theorem 4.1. Hence ü 0 in or u1 u2 in
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Corollary 4.2. Let u1 and u2 be solutions of the initial value problem
(4.1), (4.2) which are in C2 forx E and t 0. Then u1 u2.

While Corollary 4.2 asserts the uniqueness of solutions of the initial
value problem, Corollary 4.1 gives the more precise information that
knowing u and u1 only on the base of the conical domain uniquely
determines u in In particular, the values of u and u1 on the base of
uniquely determine the value of u at the apex of We state this precisely
in the following corollary.

Corollary 4.3. Let the point (x°, t°) and the conical domain be as
described in Theorem 4.1 and let u be a function in satisfying the
wave equation in Il. Then the value of u at (x°, t°) is uniquely determined
by the values of u and u1 on the base of ci.

According to Corollary 4.3, the value of the solution u of the initial value
problem (4.1), (4.2) at a point (x°, t°) (with t° > 0) is uniquely determined
by the values of the initial data 4) and q on the part of the initial surface t =
o cut off by the backward characteristic cone with apex at (x°, t°). For this
reason, this part of the initial surface is known as the domain of dependence
of the solution at the point (x°, t°). The values of the initial data outside the
domain of dependence do not affect the value of the solution at (x°, t°). As
we saw in Section 3, the domain of dependence of the solution at (x°, t°) is
the closed ball B(x°, t°) at t 0 (see Figs. 3.2—3.4).

Let us now change our point of view and consider a point (x', 0) on the
initial surface t = 0 and ask the following question: At what points of the
upper half (x, t)-space t > 0 is the value of the solution of the initial value
problem influenced by the values of the initial data at (x', 0)? To study this
question let us consider the region R consisting of all points which lie on or
inside the forward characteristic cone with apex at (x', 0). Then it is easy to
see that the domain of dependence of the solution at any point of the upper
half (x, t)-space t > 0 which is outside of R does not contain the point (x',
0). Consequently, the value of the solution at points outside of R is not
influenced by the values of the initial data at (x', 0). It follows that the
value of the solution may be influenced by the values of the initial data at
(x', 0) only at points of R. For this reason R is known as the range of
influence of the initial data at the point (x', 0). Figure 4.1 illustrates the
domain of dependence and range of influence for n = 2.

Since we already know that the solution of the initial value problem for
the one-dimensional wave equation is given by formula (2.10), the results
of this section for n = 1 could have been obtained by direct inspection of
this formula. Indeed the value of the solution at (x°, t°) is given by

1 1
(4.4) u(x°, t°) = — [4)(x° + t°) + 4(x° — t°)] +

— J
qi(r)dr

2 2 x0—t0

1 1 rx+t 3u= — [u(x° + to, 0) + u(x° — t°, 0)] +
— J

— (T, 0)dT.
2 2 x0—t0

The conical domain ci is, in this case, the triangle PAB shown in Figure 4.2
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P(x°, t°)

Range of influence of
initial data at (x1, 0)

xo — to J
Domain of dependence
of solution at (x°, t°)

x1

Fig. 4.2

x

and the base of is the interval AB on the x-axis from x° — t° to x° + t°. It
is clear from (4.4) that the value of u at (x°, t°) depends only on the values
of u and u1 on the interval AB and this interval is the domain of depend-
ence of the solution at (x°, t°). It is also easy to see that the range of

Range of influence
of initial data at
(x, 0)

x2

Domain of dependence
of solution at (x°, t°)

Fig. 4.1
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influence of the data at a point (x', 0) on the initial line t = 0 is the
triangular region described by

I
x — x'

J

t, t 0,

and shown in Figure 4.2.
We conclude this section with a discussion of an important law of wave

propagation known as conservation of energy. If D is a region in the x-
space the integral

(4.5) E(u; D, T) =
ID

+ •.. + + t=TdX

is known as the energy of u(x, t) contained in the region D at time t = T.
The reason for the use of the word energy is that if a solution u(x, t) of the
wave equation describes a wave propagation phenomenon, the integral in
(4.5) is precisely what physicists call the energy of the wave in the region D
at time t = T. The domain of dependence inequality (3.7) is known as an
energy inequality and the method of its derivation is known as the energy
method because the integrals involved are energies. In fact, (3.7) can be
written as

(4.6) E(u; B(x°, t° — T), T) E(u; B(x°, t°), 0).

Theorem 4.2. (Conservation of energy.) If u is the solution of the initial
value problem (4.1), (4.2) which is in C2 for x E and t 0, and if the
initial data 4) and q vanish outside some ball B(O, R) in then the energy
of U contained in the whole space R7 remains constant (independent of t);
i.e., for every T 0,

(4.7) + + + t=T dx

=
— f + + + t=o dx
2

or

(4.8) E(u; R', T) = E(u; 0).

The proof of this theorem is left for the problems.

Problems

4.1. Suppose that u is a C2 solution of the wave equation (4.1) and that att
= 0, u = Ut = 0 in a ball of radius R. Up to what time t can you be sure
that U = 0 at the center of the ball?

4.2. Suppose that U is a C2 solution of the two-dimensional wave equation
and that at t = 0, U = Ut = 0 outside the disc x12 + x22 1. Up to what
time can you be sure that U = 0 at the points (a) (x1, x2) = (5, 0), (b)
(x1, x2) = (0, 10), and (c) (x1, x2) = (2, 3)?

4.3. Let (x°, t°) be a point in Suppose that U satisfies the wave
equation inside the backward characteristic cone C with apex at (x°, t°)
and U is in C2 on and inside C. Show that for any T, T <t°, the value
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of u at (x°, t°) is uniquely determined by the values of u and on the
part of the plane t = T cut off by C.

4.4. Consider the initial value problem (4.1)-(4.2) for n = 2. Let D be a
region in the initial planet = 0 and let D' be the part of the upper half
(x, t)-space t > 0 filled by cones with axes parallel to the t-axis,
generators making a 45° angle with the t-axis and bases contained in
the region D. Then, according to Corollary 4.3, the values of the
initial data in the region D uniquely determine the value of u in D'.
What is D' if D is a square?

4.5. Show that if u is the solution of the initial value problem (4.1), (4.2)
and if the initial data 4) and q vanish outside the ball B(O, R) in
then u(x, t) must vanish outside the set of points defined by the
inequalities

(4.9)

r = x . The set (4.7) may be called the range of influence of
the data in the ball B(O, R). Sketch the set (4.9) for n = 1 and n = 2.

4.6. Prove Theorem 4.2 for n = 2. [Hint: Use the energy method. Inte-
grate the differential identity (3.8) over the cylindrical region

r R + 2T, 0 t T.

Use the divergence theorem and the assertion in Problem 4.5 to
obtain the equality (4.7).]

4.7. The p.d.e.

32u t32u 32u
(4.10)

describes the forced vibrations of a homogeneous n-dimensional
body. Except for a constant multiplicative factor, the function f(x, t)
describes the density of the externally applied force at the point x of
the body at time t. Prove the uniqueness of solution of the initial value
problem for the equation (4.10) with initial conditions (4.2). Specifi-
cally, prove Corollaries 4.1 and 4.2 with equation (4.10) replacing the
wave equation (4.1).

4.8. Do Problem 4.7 with the equation

32u 32u t32u
(4.11)

instead of equation (4.10). [Hint: Use Problem 3.4.]

5. Solution of the Initial Value Problem. Kirchhoff's Formula.
The Method of Descent

In this section we will establish the existence of solution of the initial
value problem for the wave equation in two and three space variables. We
will do this by writing down a formula for u(x, t) and verifying by direct
computation that it satisfies the wave equation and the initial conditions.
Since we have already proved the uniqueness of solution, this formula must
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then give the solution of the problem. We will not go into the method of
derivation of the formula for the solution.

We first consider the initial value problem for the three-dimensional
wave equation,

32u 02u 32u 02u
(5.1) xER3, t>O

0x1 t3x2 0x3 at

(5.2) u(x, 0) = 4)(x), x E R3,

(5.3) (x, 0) = x E R3.

We are looking for the solution u(x, t) of this problem which is in C2 forx E
R3 and t 0. As we will see from the formula for the solution, u will satisfy
this smoothness requirement provided that the initial data 4) and satisfy
the smoothness conditions 4 E and E 0(R3). From now on we
assume that 4) and q satisfy these conditions.

First we state a lemma which reduces the problem of finding the solution
of (5.1), (5.2), (5.3) to the problem of finding the solution of (5.1)
satisfying the special initial conditions,

(5.4) u(x,O)0, xER3

(5.5) (x, 0) = p(x), x E R3.

Lemma 5.1. Let u,. be the solution of the initial value problem (5.1),
(5.4), (5.5) and assume that is in C3 for x E R3 and t 0. Then v =

satisfies (5.1) and the initial conditions,

(5.6) u(x, 0) = p(x), x E R3,

(5.7) (x 0) = 0 x E R3
at

and visinC2forx ER3 0.

Proof. That v satisfies (5.1) follows from the more general and obvious
fact that any derivative of a solution of a homogeneous p.d.e. with
constant coefficients is also a solution of the equation. Now, since
satisfies (5.5),

v(x, 0) 0) = p(x).

Moreover,

au a2u '32u a2u a2u \

at at2

Here we used the fact that satisfies (5.1) and the fact that vanishes for
= 0; hence all its space derivatives also vanish at t = 0.



286 Introduction to Partial Differential Equations

Lemma 5.1 and the principle of superposition yield immediately

Lemma 5.2. In the notation of Lemma 5.1, the solution of the initial
value problem (5.1), (5.2), (5.3), which is in C2 forx E R3 and t 0, is
given by

(5.8)

provided that Uct, is in C3 and is in C2 for x E R3 and t 0.

According to Lemma 5.2, in order to solve the initial value problem
(5.1), (5.2), (5.3), it is enough to know the solution of the special initial
value problem (5.1), (5.4), (5.5).

Lemma 5.3. Suppose that p E where k is any integer 2. Then
the solution of the initial value problem (5.1), (5.4), (5.5) is given by the
formula

(5.9) t) = _L f47T1 S(x, t)

and is in Ck for x E R3 and t 0.

Formula (5.9) is known as Kirchhoff's formula. In (5.9), S(x, t) denotes
the surface of the sphere in R3 with center at the point x and radius t, do-i is
the element of surface on S(x, t) and x' is the variable point of integration
on S(x, t). It is sometimes useful to rewrite formula (5.9) by introducing
new variables of integration. We set

x' = x + ta

or

= x1 + tar, = x2 + ta2, X3 = x3 + ta3

where a = (a1, a2, a3) is a unit vector in the direction of x' — x (see Fig.
5.1). As x' varies over the sphere S(x, t), a varies over the unit sphere S(0,
1). Denoting by do-1 the element of surface on S(0, 1) and using the fact that
do-1 = t2do-1, Kirchhoff's formula (5.9) takes the form

(5.10) t)
= —f-- f

p(x + ta)do-1.
417- S(O,1)

Remember that in the integral in (5.10) the variable point of integration is
a. Still another way of writing Kirchhoff's formula is in terms of the mean
value (average) M[p, S(x, t)] of the function p over the sphere S(x, t),

(5.11) S(x, t)] f p(x + ta)do-1.
4ii-t S(x,t) S(O,1)

Kirchhoff's formula then becomes

(5.12) t) = tM[p, S(x, t)].

Proof of Lemma 5.3. First we prove that u,. satisfies the initial condi-
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tions (5.4) and (5.5). Using the continuity of p it is easy to show (Problem
5.1) that

(5.13) lim M[p, S(x, t)] = p(x).

Hence, it follows from (5.12) that

t) 0 as t

and condition (5.4) is satisfied. Next, differentiating (5.10) with respect tot
we obtain

(5.14) (x, t) f p(x + f Vp(x +
S(O,1)

Here we used the chain rule,

+ ta) + ta1, x2 + ta2, x3 + ta3)

= D1p(x + ta)a1 + D2p(x + ta)a2 + D3p(x + ta)a3 = Vp(x +

where denotes the partial derivative of p with respect to its ith
variable. By (5.13) the first term in (5.14) approachesp(x) ast—+ Since
the derivatives of p are continuous, the integral in the second term of
(5.14) remains bounded as t and hence the second term in (5.14)
approaches 0 as t Thus

__

(x, t) p(x) as t

and the initial condition (5.5) is satisfied.
In order to prove that satisfies the wave equation we rewrite equation

(5.14) as follows,

aup 1 1 1
(x, t) = — t) +

I
Vp(x

0t t 4lTt t)

Now, using the fact that a is the exterior unit normal vector to S(x, t) and
applying the Divergence Theorem, we obtain

Fig. 5.1
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(5.15) (x, t) t) f V2p(x')dx'
t3t t 4lTt B(x 1)

where B(x, t) is the ball in R3 with center at x and radius t, x' is the variable
point of integration in B(x, t) and dx' is the element of volume. Differentia-
tion of (5.15) with respect to t yields

(x t) = — t) + (x, t)
at2 t at

— f V2p(x')dx' f V2p(x')dx'.
47Tt2 JB(x,t) 4iii JB(x,t)

Substitution from (5.15) for

at

an easy exercise to compute the derivative on the right side of
this equation (Problem 5.2) and obtain

(x, t) f V2p(x')thr1,
at

or

t r
(5.16) (x, t) = I V2p(x + ta)dcr1.

4n JS(On

Finally, applying the Laplacian with respect to x on equation (5.10) we
obtain

(5.17) t) f V2p(x +
4iT S(O,1)

Comparing (5.16) and (5.17) we see that u,. satisfies the wave equation
(5.1).

The assertion of the lemma concerning the smoothness of u,. follows
easily from a study of the formula (5.10). The proof of the lemma is now
complete.

The solution of the initial value problem (5.1), (5.2), (5.3) is now
obtained by combining Lemmas 5.2 and 5.3.

Theorem 5.1. Suppose that 4 E C3(R3) and E C2(R3). Then the
solution of the initial value problem (5.1), (5.2), (5.3) for the three-
dimensional wave equation is given by

(5.18) u(x, t) f fSX,t) at S(x,t)

and the solution is in C2 for x E R3 and t 0.

We consider next the initial value problem for the two-dimensional wave
equation
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32u 32u 92u
(5.19) —+———— 0 xER2 t>0

34 at2

(5.20) u(x, 0) = 4(x), x E R2,

(5.21) (x, 0) = x E R2.

The solution of this problem can be obtained from the solution of the
three-dimensional problem by a method known as the method of descent.
This method consists of regarding the initial data = 4(x1, x2) and
= x2) as functions defined in the three dimensional space R3 which do
not depend on the third variable x3. If these functions are substituted into
Kirchhoff's formula, they yield solutions of the three-dimensional wave
equation which do not depend on the variable x3, and consequently they are
actually solutions of the two-dimensional wave equation (5.19). If p(x) =
p(x1, x2) in Kirchhoff's formula (5.9), it can be shown (Problem 5.3) that

t) = f p(x,
4lTt JS(x1, x2, x3, 1)

(5.22) = f4iTt JS(x1, x2, 0; t)

= f
p(x,

2n x2, t) — (x — x1)2 — — x2)2

and t) = t). In (5.22) B(x1, x2; t) is the ball (disc) in R2 with
center at (x1,x2) and radius t. Thus, by "descending" from three dimen-
sions to two dimensions we obtain the solution of the two-dimensional
initial value problem (5.19), (5.20), (5.21) given in the following theorem.

Theorem 5.2. Suppose that 4) E C3(R2) and E C2(R2). Then the solu-
tion of the initial value problem (5.19), (5.20), (5.21) for the two-dimen-
sional wave equation is given by

f
2'7T x2; t) — — x1)2 — — x2)2

(5.23)
+

X2) dx
0t L2IT Jt2 — (xi' — x1)2 — — x2)2

and the solution is in C2 for (x1, x2) E R2 and t 0.

The method of descent can be also used to obtain the solution of the one-
dimensional initial value problem

32u
(5.24) —— — = 0 x1 ER' t>O

axf 3t2

(5.25) u(x1, 0) = 4)(x1), x1 E R',

(5.26) — (x1, 0) = x1 E R
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from the solution of the three-dimensional problem. In this case we must
"descend two dimensions." If p(x) = p(x1) in Kirchhoff's formula (5.9), it
can be shown (Problem 5.4) that

f4irt S(x1, x2, x3; t)

(5.27)
1

r
1

rx1+
I =

— J4lTt JS(xi,O,01) 2 x1—t

and t) = t).

Theorem 5.3. Suppose that 4 E C2(R1) and E C'(R'). Then the solu-
tion of the initial value problem (5.24), (5.25), (5.26) for the one-dimen-
sional wave equation is given by

1
rx1+t rx1+t

I +—I— I
2 Jx1—t at L2

(5.28)
1 1

+ t)+ - t)J

and the solution is in C2 for x1 E R' and t 0.

The solution (5.28) is, of course, the solution that we obtained earlier for
the one-dimensional problem.

Problems
5.1. Prove (5.13) for any continuous function p.
5.2. Show that

I V2p(x')dx' = f
8t JB(x t) JS(x, t)

[Hint: Introduce spherical coordinates.]
5.3. Derive (5.22). [Hint: Project onto the (x1', x21)-plane and derive

the relation

t
dx

— (x — — x2)2

5.4. Derive (5.27).
5.5. Consider the initial value problem

32u 82u 1 32u

3x12 c2 at2

u(x, 0) = 0) = x E

Write down the formulas for the solution of this problem forn = 1, 2, 3.
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6. Discussion of the Solution of the Initial Value Problem.
Huygens' Principle. Diffusion of Waves

First, let us complete the proof that the initial value problem is well-
posed. It remains to show that the solution depends continuously on the
initial data. This follows easily from an examination of the formulas for the
solution. For n = 1, the solution is given by (5.28) and involves the initial
data and integrals of the initial data. Hence, if the data change by a small
amount, the solution will also change by a small amount. For n = 2 and n =
3 the solution is given by (5.23) and (5.18), respectively, and involves
integrals and time derivatives of integrals of the initial data. Hence, if the
data and the first order derivatives of the data change by a small amount,
the solution will also change by a small amount. Note that for n = 2 and n
= 3, the data as well as their first order derivatives are required to change
by a small amount. For n > 3, derivatives of higher order (depending on n)
of the data must be required to change by a small amount.

Next, let us recall the result obtained in Section 4 concerning the domain
of dependence of the solution of the initial value problem at the point (x,
t): u(x,t) depends on the values of the initial data on the part of the initial
surface t = 0 cut off by the backward characteristic cone with apex at (x, t).
This part of the initial surface is the closed ball B(x, in the x-space R'
with center atx and radiust. An examination of the formulas (5.18), (5.23)
and (5.28) shows that indeed. forn = 1, 2, 3, the value of u(x, t) depends
on the values of the initial data in B (x, t). However a striking phenomenon
occurs in the case n = 3: u(x, t) depends only on the data (and their
derivatives) over the boundary S(x, t) of the ball B(x, t). This phenomenon
was first discovered by Huygens and is known as Huygens' principle. While
formula (5.18) shows that Huygens' principle holds for n 3, formulas
(5.23) and (5.28) show that Huygens' principle does not hold for n 1 and
n = 2. Indeed, for n = I and n = 2, u(x, t) depends on the values of the data

B(x°,

Fig. 6.1.
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over the whole ball t). In general it can be shown that Huygens'
principle holds for every odd n 3 and does not hold for any even n.

In order to understand the implications of Huygens' principle let us
consider the initial value problem for the n-dimensional wave equation
with initial data vanishing everywhere except in a small ball B(x°, €) with
center at the pointx° of and radius €. Letx be a fixed point in outside
of B(x°, €) and let us study the values of u(x, t) fort 0 (see Fig. 6.1). If n
= 3 (or n is odd and 3), Huygens' principle holds and u(x, t) is given in
terms of integrals of the data and their derivatives overS(x, t). Therefore
u(x, t) = 0 for alit for which S(x, t) does not_intersect B(x°, €). If p is the
distance between x and x°, S(x, t)intersects B(x°, t) only when t is in the
interval p — t p + €. Consequently, u(x, t) = 0 fort <p — and again
fort > p + whiie u(x, t) may be non-zero only in the interval p — I

p + €. If n = 2 (or n = 1, or n is even), Huygens' principle does not hoid
and u(x, t) is given in terms of integrals of the data over fl(x, t). Since
B(x, t) intersects B(x°, €) for all t p — €, it follows that u(x, t) = 0 for
t < p — €, whiie u(x, t) may be non-zero for au t p — €. Figure 6.2 iilus-
trates all this discussion in the (x, t)-space. Note that the history of u(x, t)
at the point x is described along the line passing through x and parallel to
the t-axis. Figures 6.3 (a) and (b) show the regions of the upper-half (x, t)-
space where u(x, t) may be non-zero if the data are not zero only in the
bail B(x°, €).

It is clear from the above discussion that a disturbance which is initially
confined in a small bali B(x°, €) of the three-dimensional space gives rise to
an expanding spherical wave having a leading and a trailing edge. Indeed,

} u 0 for n = 3,5
u may be non-zero for
n = 1 and n = 2, 4

u may be non-zero for all n.

}

u = 0 for all n.

I

__

B(x°,

Fig. 6.2

x = (x1
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(b) n = 1, and n = 2, 4,

x = (x,..., x,)

Fig. 6.3. u may be non-zero in the shaded regions

at each instant t (t> €) the disturbance is confined in a shell having outer
boundary the surface S(x°, t + €) (leading edge of the wave) and inner
boundary the surface S(x°, t — €) (trailing edge of the wave). In contrast, a
disturbance which is initially confined in a small ball B(x°, €) of the two-
dimensional space gives rise to an expanding wave having a leading edge
but (generally) no trailing edge. At each instant t the disturbance may be
present everywhere inside S(x°, t + €). Nevertheless at each fixed point x
the disturbance tends to zero with time, as is easy to see from formula
(5.23). Thus, while a disturbance initially confined in a finite region of the
three-dimensional space gives rise to an expanding wave with sharp leading
and trailing edges, a disturbance initially confined in a finite region of the
two-dimensional space gives rise to a wave with a sharp leading edge but a
slowly decaying trailing edge. This phenomenon of slowly decaying trailing
edges is known as diffusion of waves. Since diffusion of waves cannot occur
when Huygens' principle holds, it follows that there is no diffusion of waves
for odd n 3, while there is diffusion of waves for even n. The case n = 1 is

u=o

(x
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special in that there may not be any decaying trailing edge at all. At each
fixed x, u(x, t) may be constant for all t Ix — xoI + (see Problem 2.3 and
also the end of this section).

It is interesting to consider Huygens' principle and the diffusion of waves
in relation to physical phenomena that are governed by the wave equation.
Assuming that the propagation of sound in the atmosphere is governed by
the three-dimensional wave equation, a sound disturbance which is initially
confined in a finite region of the space gives rise to a wave with sharp
leading and trailing edges. At any point of the atmosphere, the sound is
"heard" during a finite interval of time and no trace of the sound is left
over after this interval. (Think of clapping your hands once.) On the other
hand, assuming that the propagation of waves in a two-dimensional me-
dium, such as a stretched membrane or a liquid surface, is governed by the
two-dimensional wave equation, a disturbance which is initiated in a finite
region gives rise to a wave which leaves behind it a slowly decaying trace.
(Think of dropping a rock in a pond.) Actually the trace that is left behind
the wave decays rapidly because of the presence of friction which is not
taken into account in the derivation of the wave equation.

We discuss next the possible validity of the formulas for the solution of
the initial value problem when boundaries are present or when u is known
to satisfy the wave equation only in some region D of the x-space which is
not necessarily the whole of R'. Suppose, for example, that we want
to study the vibrations of a finite stretched string which occupies the
segment AB of the x-axis as shown in Figure 4.2. Then forx in this segment
and all t > 0, u must satisfy the one-dimensional wave equation. According
to Corollary 4.3, the value of u at any point in the triangle PAB is uniquely
determined by the initial conditions u(x, 0) = 4(x) and ug(x, 0) = for
x in the interval AB. Now, it is easy to see that as long as (x, t) is in the
triangle PAB, formula (5.28) defines a function which satisfies the wave
equation and the initial conditions. Hence, for (x, t) in the triangle PAB,
u(x, t) must be given by formula (5.28). In order to determine u(x, t) for
largert, i.e., fort for which (x, t) lies above the triangle PAB, we must take
into account the fact that the string is finite and make use of the boundary
conditions that are specified at the ends of the string. This leads to the
study of an initial-boundary value problem which is the subject of the
last part of this chapter. However, as long as (x, t) is in the triangle PAB,
the presence of the boundary points of the string has no effect on u(x, t),
and u(x, t) is given by formula (5.28). The situation is similar for n > 1.
If u is required to satisfy the n-dimensional wave equation for x in some
domain D of the x-space R' and t > 0, and if u is required to satisfy the
initial conditions u(x, 0) = 4(x) and ug(x, 0) = for x E D, then, for
every x E D, as long as the part of the initial surface t = 0 cut off by the
backward characteristic cone with apex at (x, t) is contained in D, u(x, t) is
given by formula (5.23) for n = 2 and by formula (5.18) forn = 3 (see also
Problem 4.4). Briefly, for every x E D, u(x, t) is given by the formulas
for the solution of the initial value problem, as long as t is less than the
distance of x from the boundary of D.

Let us consider now the possibility that the initial data 4 and are not as
smooth as required by Theorems 5.1 —5.3. For simplicity we limit the
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discussion to the case n = 1, although similar comments are valid for all n.
According to Theorem 5.3, if 4) E C2(R') and iJ, E C'(R1), the solution of
the initial value problem (5.24), (5.25), (5.26) is given by formula (5.28),
which for convenience we reproduce here (with x = x1),

1 1

(5.28) u(x, 1) = — [4)(x + 1) + 4)(x— t)] +
— J

iji(x')dx'.
2 2 x-t

Moreover, this solution is twice continuously differentiable in the upper-
half (x, t)-plane t 0. Suppose now that 4) and iJ, are only sectionally
continuous, i.e., continuous for all x E W except at isolated points where
they may have finite jumps. Then formula (5.28) still defines a function
u(x, t) which, however, is no longer twice continuously differentiable but
only sectionally continuous, i.e., continuous everywhere in the upper-half
(x, t)-plane t 0, except along certain curves where it may have finite
jumps. Since such a function u(x, t) may not even be differentiable, it may
not be a solution of the wave equation in the (classical) sense that and
Ugt exist and are equal. In order to avoid this kind of difficulty, the concept
of a generalized solution of a partial differential equation was developed.
It is beyond the scope of his book to go into an explanation of this concept.
It suffices here to say that if 4) and are sectionally continuous, then
(5.28) defines a generalized solution of the wave equation and, in fact, a
generalized solution of the initial value problem (5 .24)—(5 .26). As a simple
illustration, suppose that 0 and is equal to the Heaviside func-
tion:

(6.1) H(x)
= {?

for x <0

Then the (generalized) solution of the initial value problem is given by

1 1

(6.2) u(x, t) = H(x + t) + H(x — t)

and is shown in Figure 6.4. Note that the solution has a jump discontinuity
along the characteristic lines x — t = 0 and x + t = 0 and that the jump
across each characteristic is constant. This illustrates the general phenome-
non that a discontinuity in u(x, 0) at some point of the initial line gives rise
to discontinuities in u(x, t) along the characteristics emanating from that
point.

We conclude this section with some simple examples of the initial value
problem for the one-dimensional wave equation. Suppose first that
0. Then the solution (5.28) of the problem becomes

(6.3) u(x, t) + t) - t)

and consists of two traveling waves. As we saw in Section 1, 4)(x + t)/2
represents a wave traveling to the left with speed 1, while 4(x — t)/2
represents a wave traveling to the right with speed 1. If, for example, 4 is
the cosine pulse



1COSITX for lxi
=

for ixi

1

u(x, t)
J

iji(x')dx'
2
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x+t =0

U = 2

— t = 0

U u= 1

Fig. 6.4

x

-
= 2'
>1,

2

(6.4)

then the solution (6.3) consists of two cosine pulses each having amplitude
one-half the amplitude of the initial pulse, one traveling to the left and
the other to the right. The initial pulse splits into two equal pulses traveling
in opposite directions. Figure 6.5 shows the graph of u(x, t) as a function of
x at different instances of time.

Next, suppose that 0. Then the solution (5.28) becomes

(6.5)

It is easy to see that if vanishes outside some interval I of the x-axis,
then at each fixed point x, the interval of integration (x — t, x + t) in (6.5)
eventually covers I and u(x, t) becomes constant (see Problem 2.3). If, for
example,

(6.6)
{i for 1

then at each fixed x, u(x, t) eventually becomes equal to the constant

1 dx' = 1.

Figure 6.6 shows the graph of u(x, r) as a function of x at different instances
of time.
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xt =0

= ½

t=1

t=2

Ii:
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Fig. 6.5
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Fig. 6.6
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The above two examples show that if an "infinite" stretched string is
subjected to an initial displacement pulse, the pulse splits into two equal
pulses which travel along the string in opposite directions. If, on the other
hand, the string is subjected to an initial velocity pulse (a kick), the string is
raised to a new level.

Problems
6.1. Consider the initial value problem

82u 1 32u—+.••+———-——=O; t>O,
34 34 c2 at2

u(x, 0) (x, 0) = x E

with 4) and iJi vanishing outside the ball 1) with center at the
origin and radius 1.
(a) Take c = 1. For n = 1, 2, 3 describe the regions in where u

may be different than zero when t 1, r = 2 and 1 10.
(b) Do the same as in part (a) with c 1. (See Problem 5.5.)

Interpret c as the speed of propagation of waves.
6.2. Let xi(x) be the function defined in R' by

(1 for
x1(x) = for JxJ > 1

(a) For n = 1, 2, 3, find u(0, r) if u(x, t) is the solution of the initial
value problem (4.1), (4.2) with 4(x) 0 and iji(x) = xi(x).

(b) For n = 1, 2, 3, find u(0, t) if u(x, r) is the solution of the initial
value problem (4.1), (4.2) with 4(x) x1(x) and iji(x) 0.

6.3. Consider the solution (6.3) with 4) given by (6.4).
(a) Indicate the region in the upper half (x, 1)-plane where u(x, r) 0
(b) Draw the graph of u(x, t) as a function of t (t 0) at x = 2.

(c) Discuss the discontinuities in the partial derivatives (x, t) and

(x, t). Where do these discontinuities occur in the (x, t)-plane?

6.4. Consider the solution (6.5) with kji given by (6.6). Answer questions
(a), (b), (c) of Problem 6.3.

6.5. Duhamel's principle. Let u(x, t) be the solution of the following initial
value problem for the nonhomogeneous wave equation,

a2 a2u a2u
(6.7) +————=f(x,t); t>0,

at2

(6.8) u(x, 0) 0, (x, 0) = 0, x E

Let v(x, 1; T) be the solution of the associated "pulse problem"

a2v 32v(6.9) —+...+-————=0; t>T
a4 3t2
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(6.10) v(x, = 0, v(x, r; r) = —f(x, r), x E

(Note that in this problem the initial conditions are prescribed at t =
T.) Show that

(6.11) u(x, t)

= f v(x, t; r)dT.

6.6. Use Duhamel's principle and Kirchhoff's formula to show that the
solution of the initial value problem (6.7), (6.8) with n = 3 is given by

1 f fix',t—r)
(6.12) u(x, t) = —— dx1dx2dx3

4ir r

where

r = x — x' = [(x1 — + (x2 — + (x3 —

and E(x, t) is the ball in R3 with center at x and radius t.
6.7. Find the solution of the initial value problem

82u 82u 82u 32u
—+-------+—————=f(xt) xER3 t>O
34 84 8t2

u(x, 0) = (x, 0) = x E R3.

6.8. Continuous dependence on data for the initial value problem may
be formulated in an energy sense, which is often appropriate in engi-
neering applications. In this setting, changes in the initial data and
solution are measured in terms of energy. Let u and v be two solu-
tions of (4.1), (4.2) which satisify the conditions of Theorem 4.2.
Show that E(u — v; T) = E(u — v; 0) and formulate a state-
ment of continuous dependence on initial data in terms of energy.

7. Wave Propagation in Regions with Boundaries.
Uniqueness of Solution of the Initial-Boundary Value

Problem. Reflection of Waves
We turn now to the study of the initial-boundary value problem for the

wave equation. As we discussed in Section 4 of Chapter VI, this problem
arises in the study of wave propagation in regions with boundaries. Impor-
tant examples are vibrations of bounded bodies such as finite strings and
membranes, and propagation of acoustical or electromagnetic waves in the
presence of finite or infinite reflectors. (Traditionally, one speaks of vibra-
tions in a finite body and of wave propagation in an infinite body although
the two phenomena are in fact the same.) The general problem is the
following: Let be a domain in R". Find a function u(x, t) defined forx E

and t 0, and satisfying the wave equation

(7.1) + ... + — = 0 for x E and t > 0,

the initial conditions
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(7.2) u(x, 0) = 4(x), ug(x, 0) = iji(x) for X E ci,

and one of the boundary conditions

(73) u(x, = 0 for x E aci and t 0,

or

au
(7.4) — (x, 1) = 0 for x E 3ci and t 0,

an

where the differentiation in (7.4) is in the direction of the exterior normal
to an. Note that the solution is required to satisfy only one of the boundary
conditions (7.3) or (7.4). Note also that we limit our study to homogeneous
boundary conditions.

Figure 7.1 shows a graphical representation of the initial-boundary value
problem (7.1), (7.2), (7.3) for n = 1 with being a finite interval (a, b).
Figure 7.2 shows the same problem for n = 2 with ci a bounded domain in
R2.

For simplicity in proving the results of this section, we assume that the
desired solution of the initial-boundary value problem (7.1), (7.2), (7.3) or
(7.1), (7.2), (7.4) is of class C2 forx E ci and t 0, and that the domain
is bounded and normal in the sense that the divergence theorem is applica-
ble. We first prove the following result on conservation of energy, from
which follows easily the uniqueness of solution of the initial-boundary
value problem.

Theorem 7.1. (Conservation of-energy.) Let ci be a bounded domain in
R" and suppose that u(x, t) is a solution of the wave equation (7.1)
satisfying one of the boundary conditions (7.3) or (7.4). Suppose also that

C

uxx—u't=o

a b X

Fig. 7.1



f + ••• + + lt=r dx

(7.5)

or, in the notation (4.5),

(7.6) E(u; fl, T) = E(u; 0).

Proof. We give the proof for n = 2 since it is easier to visualize the
geometry in this case. (The proof for any n 1 is not really different.) Let

be the cylindrical domain in the (xb x2, t)-space consisting of the points
(xb x2, t) for which (xb x2) E and 0 <t <T (see Fig. 7.3). We integrate
the differential identity (3.8) over IV'. Since u satisfies the wave equation
we have

(7.7) 0
= fff + — + +

The integrand in this equation is the divergence of the vector field
— + + Ut2)). Applying the divergence theorem we

obtain

t

=0
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x2

u(x, t) is in C2 for x E and t 0. Then the energy of u contained in ci
remains constant (independent of t), i.e., for every T � 0,

= f + •.. + + It=o dx,

x1

Fig. 7.2
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(7.8) 0
= ff + 2utuXZv2 — + +

where is the boundary of IV', do- the element of surface on and v =
(v1, v2, the unit normal vector on in the direction exterior to
Since the boundary consists of three parts, the top and bottom of the
cylinder and the lateral cylindrical surface, we split the integral in (7.8) into
three integrals. On the top of the cylinder, (x1, x2) E ci, t = T, v = (0, 0, 1)
and the integral is

(7.9)
— fJ + + dx1dx2.

On the bottom, (x1, x2) E ci, r = 0, ii = (0, 0, —1) and the integral is

(7.10) JJ + +
I

On the cylindrical surface, (x1, x2) E 8fl, 0 � t � T, ii = (n1, n2, 0), where n
= (n1, n2) is the exterior normal to aci, and the integral is

rT r rT r
(7.11) I I + = I I dsdt,

Jo Jon Jo Jon 8fl

t = T

x2

x1

=0

Fig. 7.3
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where ds is the element of length on the boundary curve alL Since the
integral in (7.8) is the sum of the integrals (7.9), (7.10), and (7.11), we
have

0 =
— ff (41 + 62 + It=T dx1dx2

(7.12) rr r

+ J J
+ 42 + It=o dx1dx2

+ J J
dsdt.

0 Ofl 3fl
(1

If u satisfies the boundary condition (7.4), the last integral in (7.12) is
obviously zero. If u satisifies (7.3), then = 0 on fort 0 (reason: for
(x1, x2) E 9Q, U(x1, x2, 1) is constant (=0) independent of 1) and the last
integral in (7.12) is again zero. Hence, in either case, (7.12) yields the con-
clusion (7.5) of the theorem for n = 2.

If U is required to satisfy the initial condition (7.2) in addition to the
assumptions of Theorem 7.1, then the constant energy of U in fl can be
computed in terms of the initial data. Equation (7.5) becomes in this case,

(7.13) (41 + ... + + It=T dx
= f (44, + + + ,J,2)dx.

Theorem 7.2. Let fl be a bounded domain in and suppose that U(x, t)
is a solution of either one of the initial-boundary value problems (7.1),
(7.2), (7.3) or (7.1), (7.2), (7.4). Suppose also that U(x, t) is of class C2 forx
E and 0. If the initial data 4, and q vanish in fl, then U must vanish for
every (x, t) with x E fl and t 0.

Proof. Since 4, vanishes in fl, the derivatives of 4) must also vanish in fl.
Therefore, from (7.13),

(7.14) f + ... + + It—T dx = 0

for every T 0. Since the integrand in (7.14) is continuous and nonnega-
tive, it must be zero. We conclude that for x E fl and t 0, all first order
partial derivatives of U must vanish and therefore U must be constant. By
continuity, U must be constant in the closed region of points (x, t) with x E

and t 0, and since u(x, 0) = 0 for x E fl, the constant value of U in this
region must be zero.

Corollary 7.1. (Uniqueness.) There can be at most one solution of the
initial-boundary value problem (7.1), (7.2), (7.3) or (7.1), (7.2), (7.4).

Proof. The difference of any two solutions satisfies the assumptions of
Theorem 7.2.

The above results on conservation of energy and uniqueness for the
initial-boundary value problem are valid even when the domain fl is
unbounded, provided that the initial data vanish outside some finite ball
B(0, R) in The necessary modification of the proof of conservation of
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energy is based on the observation that, in spite of the presence of
boundaries, the range of influence of the initial data in the ball B(O, R) is
the set of points in (x, 1)-space for which

(7.15) xEfl,
Since the initial data are assumed to vanish outside E(O, R), the solution u
must vanish outside the set (7.15). Consequently, in order to prove conser-
vation of energy, we integrate the differential identity (3.8) over the
cylindrical domain in the (x, t)-space consisting of those points for which x
E fl and lxi <R + 2T and 0 <t < T. (See also Problems 4.5 and 4.6.)

At this point, instead of addressing ourselves to the questions of exist-
ence and continuous dependence of solution on the initial data for the
general initial-boundary value problem, we will solve specific problems
which frequently arise in applications. In the remainder of this section we
will solve some problems for which fl is infinite and has plane boundaries.
We will do this by introducing imaginary data in the complement of
thereby reducing the problem to the initial value problem for the wave
equation which we already know how to solve. In the next two sections we
will solve the initial-boundary value problems for a finite string and for a
rectangular membrane using the method of separation of variables and
Fourier series. These two examples will serve as models for explaining the
method of solution of the general problem which is briefly outlined in the
last section of the chapter.

Example 7.1. (Semi-infinite string with fixed end.) Solve the problem

Iuxx—ute=0; 0<x<oo, 0<t
(7.16) u(x, 0) = 4(x), ut(x, 0) = qi(x); 0 x <

[u(0, t) = 0; 0 t.

Let and be the odd extensions of the initial data and to the
whole x-axis,

(x) = (x) if
x 0 if x 0

and let ü(x, t) be the solution of the initial value problem
—oo<x<oo, 0<t

ü(x, 0) = 0) = °° <x <
We know that

1 1
rX+t

ü(x, t) + t)+ — t)]+
J2 2 x-t

Since the functions and U!0 are odd, it is easy to see that ü(0, t) = 0 for all
0. Moreover, when x > 0, ü(x, t) satisfies the wave equation and the

initial conditions of problem (7.16). Therefore the desired solution of
(7.16) is the function ü(x, t) restricted to x 0,
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1 1
(X+t

u(x, t) = — 1- t) + — t)] +
J717 2

As an illustration of this general solution let us suppose that q is identically
zero and is a cosine pulse centered at x = 3,

(7.18)
for

for O<x<2.5 and 3.5<x<oo.
The solution (7.17) (which is a generalized solution in this case since the
initial data are not C2) consists of two pulses, each having amplitude one-
half the amplitude of the initial pulse, one traveling to the left and the other
to the right. When the pulse traveling to the left reaches the fixed point x =
0, it is reflected there and then travels to the right with changed sign.
Figure 7.4 shows the graph of u as a function of x at different instances of
time. The solution is easiest to understand if imaginary data are drawn on
the negative x-axis. Thus, the t = 0 part of the figure shows the graph of the

U

t=o I I I -

—5 —4 \—3 / —2 —1 0 1 2 3 4 5

U

- . I

U

t=3
..' _5 —4 —3 —2 —1 0 1 2 3 4 5

U

i I I

—5 —4 —3 —2 —1 0 3 4 5

Fig. 7.4
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odd extension of the initial pulse The reflected pulse should be
interpreted as originating from the imaginary initial pulse on the negative
x-axis.

Example 7.2. (Semi-infinite string with free end.) If the end x = 0 of a
string is free to move up or down, the slope at the free end must be zero.
We must solve the problem

0<x<oo, O<t
(7.19) u(x, 0) = u1(x, 0) = qi(x); 0

A method similar to the one used in Example 7.1 yields the solution

1 1
1-x+t

(7.20) u(x, t) = — [7e(X + t) + — t)] +
J2 2 z-t

where and are the even extensions of and q to the whole x-axis,

-
— f 4(x) if x> 0 - — J if x> 0
— if x < 0 — if x <0.

Example 7.3. (Reflection of acoustical waves from a hard plane surface.)
Solve the problem

r + I!X2X2 + '4X3X3 — Ut, = 0; x E R3 with 0 <x3, 0 <t,
(7.21) u(x, 0) = 0) = kJJ(x); x E R3 with 0 x3,

x2, 0, t) = 0; —00 <x1, x2 <00, 0 t.

The domain fl is in this case the upper-half space 0 <x3. The boundary
condition requires that the normal derivative of u be zero on the bound-
ary x3 = 0 of IL To solve the problem we introduce in the lower-half
space x3 < 0 imaginary data which are the mirror images of and q with
respect to the plane x3 = 0. Specifically, let and q be the even extensions
of and q with respect to x3, i.e.,

— x2, x3) if x3 > 0
4X1, X2, x2, —x3) if x3 < 0,

with a similar formula for Let ñ be the solution of the initial value
problem for the wave equation in the whole (x1, x2, x3)-space with initial
data 4 and q (given by formula (5.18) with 4 and q in place of 4 and
The restriction of ñ to the upper-half space 0 is the desired solution of
problem (7.21). As an illustration, suppose that the initial data are zero
everywhere except in a small ball centered at the point (0, 0, a). Then the
solution consists of two expanding spherical waves (spherical shells) cen-
tered at (0, 0, a) and at (0, 0, —a). The wave centered at (0, 0, a) is the
direct wave while the one centered at (0, 0, —a) is actually the reflection of
the direct wave on the plane x3 = 0.

Problems

7.1. Consider the initial-boundary value problems for the telegraph equa-
tion
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(7.22) — — aut — bu = 0; 0 <x < L, 0 <t,
(7.23) u(x, 0) = u,(x, 0) = qi(x); 0 L

(7.24) u(0, 1) = 0, u(L, t) = 0; 0

or

(7.25) t) 0, t) = 0; 0

Assume that a and b are nonnegative constants.
(a) Multiply (7.22) by and derive the differential identity

— + + — 2au? = 0.

(b) Prove that if u satisfies (7.22) and either one of the boundary
conditions (7.24) or (7.25), then

rL

J
+ + bu2) It=Tdx

J
+ + bu2)

0 0

(c) State and prove a uniqueness theorem for the above initial-
boundary value problems.

7.2 State and prove conservation of energy and uniqueness theorems for
the initial-boundary value problems for equation (3.19). Note that
the energy in this case has an extra term.

7.3. State and prove uniqueness of solution of the initial-boundary value
problems for the wave equation (4.10) with a forcing term.

7.4. (a) Show that if u satisfies the wave equation (7.1) and the mixed
boundary condition

(7.26) xE3fl,
an

where a = a(x) is a nonnegative continuous function defined for x
E then

f + + + t=T dx + f cxu2 I1=T

= f + + + dx + fau2 I=o ds

where ds is the element of surface on
(b) Prove the uniqueness of solution of the initial-boundary value

problem (7.1), (7.2), (7.26).
7.5. Verify by direct substitution that (7.20) satisfies (7.19). Discuss the

solution (7.20) when kJI is identically zero and is the cosine pulse
(7.18). In particular draw a figure analogous to Figure 7.4.

7.6. Consider the initial-boundary value problem for the two-dimensional
wave equation in the first quadrant

0; x>0, y>O, t>0
u1(x,y,0)=qi(x,y);

u(O, y, t) = u(x, 0, t) = 0; x 0, y 0, t ? 0.
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Introduce appropriate imaginary data in the other three quadrants to
reduce the problem to an initial value problem. Discuss the solution
if the initial data are zero everywhere except in a small circle in the
first quadrant.

7.7. Consider the initial-boundary value problem for the three-dimen-
sional wave equation in a domain between two parallel planes,

+ + — = 0; x E R3 with 0 <x3 <a, 0 <t

u(x, 0) = Ut(X, 0) = qi(x) x E R3 with 0 a

u(x1, x2, 0, t) = u(x1, x2, a, t) = 0, —00 <x1, x2 <00, 0 t.

Introduce an infinite sequence of imaginary data to reduce the prob-
lem to an initial value problem. Discuss the solution if the initial
data are zero everywhere except in a small ball.

7.8. Suppose that the boundary of the domain consists of two pieces,
= S1 + S2 and suppose u is required to satisfy the boundary condition

u(x,t)=O for xES1,
(7.27) —(x,t) =0 for xES2; 0�t.

an
Show that conservation of energy and uniqueness results are still
valid for the problem (7.1), (7.2), (7.27).

8. The Vibrating String
Consider a taut string of length L with both ends fixed, such as the string

of a guitar. In order to determine the vibrations of the string we must solve
the initial-boundary value problem

(8.1) Uxx — = 0; 0 <x <L, 0 <t,
(8.2) u(x, 0) = Ut(X, 0) = qi(x); 0 L,

(8.3) u(0, t) = 0, u(L, t) = 0; 0 t.

We know that this problem can have at most one solution. We will find the
solution by using separation of variables and Fourier series. The method of
solution consists of two steps. First, using separation of variables we find an
infinite collection of functions which satisfy the wave equation (8.1) and
the boundary conditions (8.3). Then we superpose these functions and
use Fourier series representations of the initial data and q to satisfy the
initial conditions (8.2). The resulting solution of (8.1), (8.2), (8.3) will be
in the form of an infinite series.

We begin by looking for solutions of (8.1) in the form

(8.4) u(x, t) = X(x)T(t).

Substituting into (8.1) and separating the variables we find

-x
X T
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where —X is the separation constant. The minus sign is for later conveni-
ence. We conclude that a function u(x, t) of the form (8.4) will be a solution
of (8.1) if X(x) and T(t) satisfy the ordinary differential equations

(8.5) X"+XXO, O<x<L
(8.6) T" + XT = 0, 0 <t.
It is also easy to see that (except for the trivial and uninteresting case u(x, t)

0) a function of the form (8.4) will satisfy the boundary conditions (8.3)
if

(8.7) X(O) = 0, X(L) = 0.

We are faced then with finding nontrivial solutions X(x) of the boundary
value problem (8.5), (8.7). Note that this problem always has the trivial
solution X(x) 0. It turns out that for most values of X, the trivial solution
is the only solution of the problem. To see this it is convenient to consider
the three cases X < 0, X 0 and X > 0 separately, since in each of these
cases the general solution of equation (8.5) has a different form.

If X < 0, the general solution of (8.5) is

X(x) = +

To satisfy the boundary conditions (8.7) the constants must be such that

C1 + C2 = 0,

C1e +C2e =0.
The only solution of this system of equations for C1, C2 is the trivial one, C1
= C2 = 0. Hence the only solution of (8.5), (8.7) is the trivial solution.

If X = 0, the general solution of (8.5) is

X(x) = Ci + C2x.

To satisfy the boundary conditions (8.7) we must have

Cl = 0,
C1 + C2L = 0,

so that C1 = C2 = 0 and again the trivial solution is the only solution of
(8.5), (8.7).

Finally, if X > 0 the general solution of (8.5) is

X(x) = C1 cos + C2 sin

and the boundary conditions (8.7) will be satisfied if

C1 = 0,

C1 + C2 sin = 0.

This system of equations for C1 and C2 has nontrivial solutions, namely C1
= 0 and C2 arbitrary, if and only if
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(8.8) sin = 0,

or

= kIT,

where k is an integer. Since A is assumed to be positive, we conclude that
the only values of X for which the problem (8.5), (8.7) has nontrivial
solutions are

k2ir2
(8.9) k=1,2

For each value Xk of X, problem (8.5), (8.7) has infinitely many solutions,
namely

(8.10) Xk(x) = Dk k = 1, 2,

where Dk is an arbitrary constant. (Note that these infinitely many solu-
tions corresponding to a given Xk differ only by a multiplicative constant,
i.e., they are linearly dependent.)

The problem of finding nontrivial solutions of (8.5), (8.7) is an example
of a general problem known as the eigenvalue problem or Sturm-Liouville
problem. The values of X for which the problem has nontrivial solutions are
known as eigenvalues and the corresponding nontrivial solutions are called
eigenfunctions. The eigenvalues of (8.5), (8.7) are given by (8.9) and the
corresponding eigenfunctions by (8.10).

Let us return now to the problem of finding nontrivial solutions of the
wave equation (8.1) satisfying the boundary conditions (8.3). The general
solution of equation (8.6) for T, with X being an eigenvalue Xk, is

(8.11) Tk(t) = Ak + Bk k = 1, 2,

where Ak and Bk are arbitrary constants. Substituting (8.10) (8.11)
into (8.4) we obtain the infinite collection of functions

kITx I kITt
(8.12) Uk(X, t) = sin—z— cos—z-- + Bk sin k = 1, 2,

each of which satisfies the wave equation (8.1) and the boundary condi-
tions (8.3). (In (8.12) the constant Dk has been incorporated into the
arbitrary constants Ak and Bk.)

Each of the functions Uk(X, t) (with reasonable values of Ak and Bk)
represents a possible motion of the string known as the kth mode of
vibration or kth harmonic. Any one of these modes can be excited if the
proper initial conditions prevail. Indeed, if the initial conditions are

.kITx kIT.kITx
(8.13) u(x, 0) = Ak sin—i-, 0)= sln—z—, 0 <x <L,

for some positive integer k, then the solution of the initial-boundary
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value problem (8.1), (8.13), (8.3) is the function Uk(X, t) given by (8.12),
and the string will vibrate in its kth mode. With more general initial
conditions however, it is reasonable to expect that many, possibly all,
modes of vibration will be excited at the same time. This suggests that we
try to solve the initial-boundary value problem (8.1), (8.2), (8.3) by
superposition of the functions Uk(X, t).

Let us suppose then that the solution of the problem (8.1), (8.2), (8.3)
can be written in the form of the infinite series

kifl • kifl
(8.14) u(x, t) = L sin (Ak cos— + Bk sin

k=1 L L

where the constants Ak and Bk are to be determined. These constants must
be assigned values such that (8.14) will satisfy the wave equation (8.1), the
initial conditions (8.2) and the boundary conditions (8.3). We note first
that if the constants Ak and Bk go to zero like k4 as k oo, i.e., if there is a
constant M > 0 such that

(8.15) AkI Mk4, IBkI Mk4, k = 1, 2,

then the series in (8.14), as well as the series obtained by termwise
differentiation twice with respect to x or t, all converge uniformly for
o x L and t 0. It follows that if the coefficients Ak, Bk satisfy the
condition (8.15), then the function u(x, t) defined by (8.14) is of class C2
for 0 x L and t 0, and u(x, t) satisfies the wave equation (8.1) (since
each term of the series does) and the boundary conditions (8.3). In order
that u(x, 1) satisfy the initial conditions (8.2), the constants Ak and Bk must
be chosen so that

(8.16) = 0 x L,

(8.17) qi(x) = Bk sin 0 x L.

Thus the constants Ak and k = 1, 2, ... , must be the coefficients
of the Fourier sine series representations of the functions and qi(x),
respectively, on the interval 0 x L. From formulas (8.40) of section 8,
Chapter VII, these constants are given by

(8.18) Ak k = 1,2,...,

(8.19) Bk = I q(x) sin dx, k = 1, 2
kTrLJ0 L

Moreover, it follows from an obvious modification of Theorem 8.2 of
Chapter VII (see also Problem 8.13 of Chapter VII) that the representa-
tions (8.16) and (8.17) are valid in the sense of absolute and uniform
convergence provided that the initial data satisfy the following conditions:
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(1) 4) and q are continuous and have sectionally continuous derivatives for
0 x L; and (2) = = 4(IT) = = 0 (Problem 8.1). Since
I
sin kin/L I � 1 and cos I � 1, the conditions (1) and (2) also

guarantee that the series in (8.14) converges absolutely and uniformly for 0
x L and t 0 to the continuous function u(x, t), which obviously

satisfies the boundary condition (8.3) and the first of the initial conditions
(8.2). This function u will also satisfy the second initial condition and the
wave equation itself if the coefficients Ak and Bk satisfy condition (8.15).
For condition (8.15) to hold it is necessary to impose additional conditions
on the initial data 4) and q (see Problem 8.2). In practice, however, we only
check that and q satisfy the above conditions (1) and (2) and view (8.14)
as the generalized solution of the problem (8.1), (8.2), (8.3).

Example 8.1. A guitar string of length L is pulled at the midpoint by the
amount a and then released. Find the motion of the string.

We must solve the problem (8.1), (8.2), (8.3) with tji 0 and

for
(8.20) . L

(L — x, for x L.

The solution is given by (8.14). Obviously Bk = 0 for all k, while the Ak are
the Fourier sine series coefficients of the function 4)(x). Except for the
multiplicative constant 2a/L, is the function whose Fourier sine series
we obtained in Chapter VII, formula (8.41). Therefore, the motion of the
string is given by

8a sin . klTt
(8.21) u(x, t) = —j 2

cos—
lTk=i K L L

By noting that the terms with even k are zero and setting k = 2n + 1, n = 0,
1, ..., we obtain the alternate formula

8a . (2n + 1)lTx (2n + 1)irt
(8.22) u(x, t) =—j 2

sin cos
ir L L

which shows clearly that the resulting motion of the string is, in this case,
the superposition of odd harmonics.

Let us examine more closely formula (8.12) for the kth harmonic or
mode of vibration the string. In order to relate more closely to the
physical parameters of the string, let us return to the original time variable
by replacing t with ct,

kiu I klTct kirct
(8.23) Uk(X, t) = sin

—j—
cos + Bk sin

where c = T being the tension in the string and p its density (mass
per unit length). Using a trigonometric identity, we rewrite (8.23) in
the form
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krrx
(8.24) Uk(X, t) = Ek sin cos kw(t —

where Ek and tk are new arbitrary constants and

(8.25)

From (8.24) we see that when the string vibrates in its kth mode, each
point of the string (fixed x) performs a harmonic motion with circular
frequency (radians per second) kw and amplitude proportional to
sin (klTx/L). When k 1 the string vibrates in what is known as its funda-
mental mode,

(8.26) u1(x, t) = E1 cos w(t —

with fundamental frequency (cycles per second)

(8.27)

The frequency of the kth harmonic is k times the fundamental frequencyf.
When we listen to a string which has been plucked in an arbitrary manner,
we generally hear all of the harmonics, but their various frequencies are all
integral multiples of the fundamental frequencyf. This property of vibrat-
ing strings (which, as we will see, is not shared by vibrating membranes) is
the reason why strings are capable of producing musical tones. Further-
more, the presence of the various harmonics imparts a characteristic
known as "timbre" to the musical tone produced by a string, in contrast to
a "pure tone" (produced, for example, by an electronic instrument) which
is composed of a vibration of a single frequency. In practice, since the
amplitude and energy of each harmonic decreases with increasing k, we are
mainly hearing the lower harmonics. Moreover, under special initial condi-
tions, some of the harmonics may be altogether absent. For instance, in
Example 8.1 all even harmonics are missing because the initial displace-
ment of the string is symmetric with respect to its middle x = L/2. It is even
possible to eliminate some of the harmonics, and consequently raise the
pitch of the emitted tone, by lightly touching one's finger at certain points
of the string after the string has been plucked. To see this, consider Figure
8.1, which shows the graphs of the amplitudes (up to a multiplicative
constant) of the first four harmonics. The points where the amplitude is
zero, and which therefore remain stationary, are known as nodes. The
fundamental mode has only two nodes, the ends x = 0 and x = L. The
second harmonic has three nodes, the ends and the midpoint x = L/2. The
third harmonic has four nodes, etc. Suppose now that after the player has
plucked the string, he then gently touches the midpoint of the string with
his finger. The effect of this action is to force the midpoint into a node and
thus eliminate all harmonics except those which have the midpoint as a
node. In particular, the fundamental mode will disappear and the lowest
emitted frequency will be that of the second harmonic, namely 2f. Thus the
pitch of the emitted musical tone will be doubled.
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Formula (8.27) shows the dependence of the fundamental frequency of a
vibrating string on its length, tension and density. It is not difficult to see
how these three factors enter into the construction, tuning and playing of a
guitar (Problem 8.4).

As another illustration of the method of separation of variables and
Fourier series, let us study the vibrations of a string of length L with both
ends free to slide on frictionless vertical posts. Instead of (8.3), the
boundary conditions in this case are

(8.28) t) 0, t) = 0; 0 t.

We must solve the initial-boundary value problem (8.1), (8.2), (8.28).
After separation of variables, the eigenvalue problem to be solved is

fx" + xx = 0
(8.29) = X'(L) = 0.

In this case X = 0 is an eigenvalue of the problem with constants as the
corresponding eigenfunctions. The sequence of eigenvalues is

k27r2
(8.30) X0=0; k=1,2,...

and the corresponding eigenfunctions are

(8.31) X0(x) D0; Xk(x) Dk k = 1, 2,

where D0, D1, D2, . . . are arbitrary constants. The general solution of the
T equation (8.6), when X is an eigenvalue, is

T0(t)

(8.32) kin kin
Tk(t) = Ak cos — + Bk sin k 1, 2,

where A0, A1, A2 B0, B1, B2, ... are arbitrary constants. Each of the
functions

I
%

t) = + — t
(8.33) / 2

t) = cos (Ak cos + Bk sin k = 1, 2,

satisfies the wave equation (8.1) and the boundary conditions (8.28). The
functions Uk(X, t), with k = 1, 2 represent the various modes of
vibration of the string, while u0(x, t) represents a translation (rigid motion)
which is possible since the ends of the string are assumed to be free,
allowing the string to slide up or down. Superposition of the functions
(8.33) yields

A0 B0 klTx / kifl . kin
(8.34) u(x, t) = + t + cos —i-- cos + Bk sin
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Fig. 8.1

In order for (8.34) to satisfy the initial conditions (8.2) the constants Ak
and Bk must be chosen so that

(8.35) =
+

0 x L,

B0 kIT kITx
(8.36) qi(x) + Bk cos 0 x L.

Thus the constants A0, A1, A2 and B0, (IT/L)B1, (2rr/L)B2, ... must be
the coefficients of the Fourier cosine series expansions of the functions
and qi(x), respectively, on the interval 0 x L. From formulas (8.39) of
Section 8, Chapter VII, these constants are given by

(8.37) Ak dx, k = 0, 1, 2,

B0 =
— J(8.38) L 0

L 2
fL kITx

Bk = — — i q(4cos dx, k = 1, 2
krrLio L

The solution of the initial-boundary value problem (8.1), (8.2), (8.28) is
given by the series (8.34), where the coefficients in this series are given by
formulas (8.37) and (8.38).

Problems

8.1. Prove the assertion following formula (8.15).
8.2. Show that Ak and Bk will satisfy condition (8.15) if the initial data
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and cit satisfy the following conditions (a) E C4 ([0, L]); (0) =
= O,p = 0, 1, 2,3. (b) cit E C3 ([0, L]); = = O,p

= 0, 1, 2. [Hint: Use an obvious modification of Lemma 8.2 of Chap-
ter VII.]

8.3. How are the constants Ek and tk in (8.24) related to the constants Ak
and Bk in (8.23)?

8.4. Discuss the significance of formula (8.27) in the construction, tun-
ing and playing of a guitar. In particular, consider how the density
p is made large on the lower frequency strings.

8.5 Find the solution of the initial value problem (8.1), (8.2), (8.3) with
4(x) 0 and

/ L
for

L(L_x for

8.6. A string of length L with both ends fixed, such as the string of a
piano, is struck at its midportion, the impact thus imparting to the
string an initial velocity qi(x) in the shape of the rectangular pulse
given by the right side of equation (8.42) of Chapter VII. Find the
motion of the string.

8.7. A string of length with fixed ends is displaced into a parabolic arc
and then released from rest (Ut(X, 0) = 0). Assuming that

u(x,O)=bx('n-—x),

where b is a small constant, derive the formula for the motion of the
string,

u(x, t) = — sin nx cos nt.
ITn=1 fl

8.8. Solve the problem (8.1), (8.2), (8.3) with initial data

2irx SITX
4(x) = a sin —i--, ci'(x) = b 0 x L,

where a and b are small constants.
8.9. Show that the solution of problem (8.1), (8.2), (8.3) with L = ir and

initial data

2a
4(x)

x for IT

2

IT

is given by u(x, t) =

8a sin(nIT/2) . 4b 1 —sin nx cos nt + — sin nx sin nt.
fl.2 n2 IT fl1 fl4
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8.10. Supply all the details of the method of separation of variables and
Fourier series for solving the initial-boundary value problem for the
string with free ends, which was outlined at the end of this section.

8.11. Consider the following initial-boundary value problem for the non-
homogeneous wave equation

(8.39) — = f(x, t); 0 <x < L, 0 <t,
(8.40) u(x, 0) = 0, u1(x, 0) = 0; 0 x L,

(8.3) u(O, t) = 0, u(L, t) = 0, 0 t;

which arises in the study of forced vibrations of a string with zero
initial conditions. Use a modification of Duhamel's principle (Prob-
lem 6.5) to obtain the following formula for the solution

(8.41) u(x, t)
= [Efk(T) sin

kir(t— r) dv] sin—v

where

2
(8.42) fk(T) = — I fix, r)sin—dx, k = 1,2

L

What is the solution of problem (8.39), (8.2), (8.3)? [Remark: In
deriving (8.41), do not worry about series convergence or the valid-
ity of the interchange of summation and integration. If f(x, t) is as-
sumed to be sufficiently smooth, it is easy to show that (8.41) will
converge and will satisfy (8.39), (8.40), (8.3). When a formula such
as (8.41) for the solution of a problem is obtained in this carefree
manner, this formula is sometimes referred to as the formal solution
of the problem.]

8.12. If f(x, t) = F(t) sin use Problem 8.11 to derive the following
formula for the solution of problem (8.39), (8.40), (8.3),

u(x, t) = — F(r) sin
T)

dT.

9. Vibrations of a Rectangular Membrane
Consider a stretched membrane which is fastened to a rectangular frame

of length a and width b. In order to study its vibrations we must solve the
initial-boundary value problem

(9.1) + — = 0; 0 <x <a, 0 <y <b, 0 <t,

(9.2) £u(x,y, 0) =
0 b

y, 0) = y);

5 (,y,) 0, u(a,y,t) = 0; 0

= 0, u(x,b,t) = 0;

Our method of solution will be the same as that used for the vibrating
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string. First, using separation of variables we will obtain a collection of
functions satisfying the wave equation (9.1) and the boundary conditions
(9.3). Then we will form a superposition of these functions which will also
satisfy the initial conditions (9.2).

We begin by looking for solutions of (9.1) which have the form

(9.4) u(x, y, t) = v(x, y)T(t).

By the usual method of separation of variables we find that in order for a
function u of the form (9.4) to satisfy (9.1), the functions v and T must
satisfy the equations

(9.5) O<x<a, O<y<b
(9.6) T"+XT=O; O<t.
Moreover, (except for the trivial and uninteresting case u 0), in order for
(9.4) to satisfy the boundary conditions (9.3), v(x, y) must satisfy the
boundary conditions

(9 7\ Jv(O, y) = 0, v(a, y) = 0; 0 y b
v(x, 0 x a.

We are faced then with the boundary value problem (9.5), (9.7) for the
elliptic partial differential equation (9.5). This is an eigenvalue problem.
We must find the values of A (eigenvalues) for which the problem has
nontrivial solutions (eigenfunctions).

It turns out that the eigenvalue problem (9.5), (9.7) can be solved by the
method of separation of variables. (This is due to the simplicity of the
rectangular domain for the problem.) Let us look for solutions of (9.5) of
the form

(9.8) v(x, y) = X(x)Y(y).

Substitution of (9.8) into (9.5) and separation of variables yields

xl,

Since the left side is a function of y only while the right side is a function of
x only, each side must be equal to the same constant, say ji. Hence

(9.9) 0<x<a
(9.10) Y" + vY = 0, 0 <y <b
where p = X — /L. The boundary conditions (9.7) lead to the boundary
conditions for X(x) and Y(y),

(9.11) X(0) = 0, X(a) = 0

(9.12) Y(0) = 0, Y(b) = 0.

Problems (9.9), (9.11) and (9.10), (9.12) are eigenvalue problems of the
type that we solved in the previous section. Their eigenvalues and corre-
sponding eigenfunctions are
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m2ir2 mirxXm(x)=Dmsin; m=1,2,...
a a

• niry
= —i— , = sin—i-— ; n = 1, 2

Since X = p. + u, we conclude that the eigenvalue problem (9.5), (9.7) has
a double sequence of eigenvalues

'm2 fl2\
(9.13) Xmn = (_ +—j); m, n, = 1,2,...\a bi
with corresponding eigenfunctions

mrrx . n'ziy
(9.14) Vmn(X, Y) Dmn sin sin ; m, n = 1, 2,

where Dmn are arbitrary constants.
When X is one of the eigenvalues (9.13), the general solution of the T

equation (9.6) is

(9.15) Tmn(t) = Amn + Bmn m, n = 1, 2

Substitution of (9.14) and (9.15) into (9.4) yields the double sequence of
functions

miTx n'n-y
(9.16) Umn(X, y, t) = sin— sin—i-— (Amn cos

+ Bmn sin t); m, n 1, 2,

each of which satisfies the wave equation (9.1) and the boundary condi-
tions (9.3). If the constants Amn and Bmn tend to zero sufficiently rapidly as
m, n oo, then the superposition

. nrry
(9.17) u(x,t) = L sin—sin———

m,n=1 a b

(Amn t + sin t)

will also satisfy (9.1) and (9.3). In order for (9.17) to satisfy the initial
conditions (9.2), the constants Amn and Bmn must be chosen so that

mlTx •

(9.18) 4(x, y) = sin sin
m,n=1 a

— miTx n'ziy
(9.19) y) = \/XmnBmn sin sin

lfl,n=1 a

Here we need a theorem asserting that a function of two variables which is
defined in a rectangle 0 x a, 0 y b and satisfies certain conditions
can be represented by a double Fourier sine series. Such a theorem can be
found for example in the book of Tolstoy.2 Jf the representation (9.18) is
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assumed to be valid in the sense of uniform convergence on the rectangle 0
x a, 0 y b, then it is easy to obtain the following formula for the

coefficients,

4 faf.b n'n-y
(9.20) A mn = — I 1 4) (x, y) sin sin dxdy;abj0j0 a b

m, n = 1, 2

The formula for the coefficients Bmn is obvious.
Let us discuss now the eigenvalue problem (9.5), (9.7) and the associ-

ated modes of vibration of the membrane. For simplicity we consider only
square membranes, a = b. Concerning the eigenvalue problem (9.5), (9.7)
we make the following important observation. When m = n there is only
one linearly independent eigenfunction

m'n-y
(9.21) Vmm(X, y) = sin sin

corresponding to the eigenvalue

(9.22) Xmm =

However, when m n there are two linearly independent eigenfunctions

m'n-x. n'rry n7rx.
(9.23) Vmn(X, y) = sin sin Vnm(X, y) = sin sin

a a a a

corresponding to the same eigenvalue

(9.24) Xmn = Xnm = (m2 + n2).

Thus, the situation here is in contrast to that of the one-dimensional
eigenvalue problem (8.5), (8.7) for which there is only one linearly inde-
pendent eigenfunction corresponding to each eigenvalue. Now, a mode of
vibration of the membrane corresponding to the eigenvalue Xmn is given by

Umn(X, y, t) = Vmn(X, y)[Amn cos + Bmn sin t]

where Vmn is an eigenfunction corresponding to Xmfl. For simplicity let us
take Bmn = 0 (the effect of this is to pick a convenient value for the phase
of the motion) and let us incorporate the arbitrary constant Amn into Vmn.
Also, let us return to the real time variable by replacing t by Ct where c =

T being the tension and p the density of the membrane. Then, a
mode of vibration corresponding to Xmfl is given by

(9.25) Umn(X, y, t) = Vmn(X, y) C05 Ct,

where Vmn is any eigenfunction corresponding to Xmn. From (9.25) it
follows that each point of the membrane performs a simple harmonic
motion with frequency
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(9.26)
= =

+ n2

and amplitude equal to the value of the eigenfunction Vmn at that point.
The fundamental (lowest) frequency of the membrane is

(9.27) fii =

From (9.26) and (9.27) it follows that, in contrast to a vibrating string, the
frequencies of the higher modes of vibration of a square membrane are not
integral multiples of the fundamental frequency. When a drum is struck in
an arbitrary manner, many modes of vibration are simultaneously present,
but the various frequencies that we hear are not integral multiples of the
same frequency. This accounts for the lack of musical quality of a tone
emitted by a drum. It is possible however, at least in theory, to excite only a
single mode of vibration given by (9.25). Remembering that Vmn(X, y)
represents the amplitude of motion of the points of the membrane, the
points (x, y) satisfying

(9.29) Vmn(X, y) = 0

form curves known as nodal curves. The points of the membrane lying on
nodal curves of Vmfl remain stationary. Clearly the nodal curves of each of
the two eigenfunctions (9.23) are straight lines. However, since linear
combinations of the eigenfunctions (9.23) are also eigenfunctions corre-
sponding to the same eigenvalue (9.24), the nodal curves corresponding to
these eigenfunctions can assume many complex forms, as illustrated in
Figure 9.1.

Problems

9.1. Derive formula (9.20) for the coefficients of the double Fourier sine
series representation (9.18) of the function çb under the assumption of

V1. V21 V12 + V21 V12 + V21

Vi3 V13 + V31 V13 + V23 + V32

Fig. 9.1
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uniform convergence of the series.
9.2. Show that the nodal curves of modes of vibration of a square mem-

brane corresponding to eigenvalues of the form (9.22) are always
straight lines.

9.3. Discuss the lowest frequency emitted by a vibrating square membrane
in terms of its physical parmeters.

10. Vibrations in Finite Regions. The General Method of
Separation of Variables and Eigenfunction Expansions.

Vibrations of a Circular Membrane
The problems of a vibrating string and of a vibrating rectangular mem-

brane are special cases of a general problem of vibrations in finite regions.
The study of this problem requires the solution of the following initial-
boundary value problem for the wave equation in a bounded domain ci of

with piecewise smooth boundary: Find the function u(x, t) defined forx
E ci and t 0, and satisfying the wave equation

(10.1) V2u — u11 = 0, for x E ci and t > 0,

the initial conditions

(10.2) u(x, 0) = Ut(X, 0) = qi(x), for E fl

and the boundary condition

(10.3) u(x, t) = 0, for x E 0ci and t 0.

The method of separation of variables and Fourier series which was
employed in the last two sections can be generalized (at least in theory) to
obtain a formula for the solution of (10.1), (10.2), (10.3). The formula will
involve series expansions of the initial data and qi in terms of the
eigenfunctions of an associated eigenvalue problem for the Laplacian
operator.

The method begins by looking for functions u(x, t) of the form

u(x, t) = v(x)T(t)

which satisfy the wave equation (10.1) and the boundary condition (10.3).
By the usual arguments of the method of separation of variables, v(x) must
satisfy

(10.4) V2v + Xv = 0 for x E ci

(10.5) v = 0 for x E 0fl
and T(t) must be a solution of the o.d.e.

(10.6) T" + XT = 0 for t > 0

where —X is the separation constant. The boundary value problem (10.4),
(10.5) is an eigenvalue problem. The values of X for which the problem has
nontrivial solutions are the eigenvalues of the problem. The corresponding
nontrivial solutions are the eigenfunctions. Just as in the case of the
Dirichlet problem for Laplace's equation, a solution of (10.4), (10.5) is
required to be in C2(ci) fl C°(ci).
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We summarize here the properties of the eigenvalues and eigenfunctions
of the eigenvalue problem (10.4), (10.5):

1. The eigenvalues are all positive.
2. If v1 and v2 are eigenfunctions corresponding to the eigenvalues A1

and A2 respectively, and if A1 # A2, then

(10.7) jvi(x)v2(x)dx= 0.

Any two functions v1, v2 satisfying (10.7) are said to be orthogonal.
Accordingly, property 2 states that eigenfunctions corresponding to dis-
tinct eigenvalues are orthogonal.

3. The eigenvalues form a countable set of numbers n = 1, 2, ...}.
Moreover 0O as n 00

4. Each eigenvalue has a finite number of linearly independent eigen-
functions corresponding to it. This number is called the multiplicity of the
eigenvalue. By a process known as orthogonalization, it is possible to form
linear combinations of these eigenfunctions which are mutually orthogo-
nal. The number of mutually orthogonal eigenfunctions thus formed is
equal to the multiplicity of the eigenvalue.

5. Every eigenfunction belongs to C1(fl) and is analytic in fl.
Assuming property 5, properties 1 and 2 can be easily proved using

Green's identities described in Section 1 of Chapter VI. The proof of
property 1 is the subject of Problem 1.4 of Chapter VI. The proof of
property 2 is outlined in Problem 10.1. The proofs of properties 3 and 4
and the proof of the eigenfunction expansion theorem stated below in-
volve the theory of integral equations and can be found, for example, in the
book of Vladimirov,3 §24.6. The proof of analyticity of an eigenfunction in

is similar to the proof of the property for harmonic
functions. That an eigenfunction belongs to C1(fl) can be proved by the
methods of potential theory (see, for example, Sobolev,4 Lecture 15). It
should be noted that the proofs of some of these results may require
additional smoothness assumptions for the boundary of fl.

On the basis of the above stated properties, the eigenvalues of (10.4),
(10.5) may be listed in order of increasing magnitude

; as

with an eigenvalue being listed in this sequence as many times as its
multiplicity. The corresponding eigenfunctions

(10.9) v1, v2, v3

are chosen so that they are mutually orthogonal, i.e.

(10.10) f Vm(X)Vn(X)dX = 0, m n.

The following theorem concerning the representation of functions by
means of eigenfunction expansions is of fundamental importance.

Theorem 10.1. (Eigenfunction expansion theorem.) Suppose that f E
C2(fl) and f(x) = 0 for x E 01L Then f can be represented by a series
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involving the eigenfunctions (10.9) of the eigenvalue problem (10.4),
(10.5),

(10.11) f(x) = x E

with the series converging absolutely and uniformly tof on The coeffi-
cients in (10.11) are given by

f(10.12)

a

Example 10.1. The eigenvalue problem for the "one-dimensional Lapla-
cian,"

+ Xv = 0, 0 <x <L

v(0) = v(L) = 0,

was solved in Section 8. The eigenvalues are

L2' n = 1, 2, ... ,

with corresponding eigenfunctions

nlTx n=1,2

Each eigenvalue has multiplicity 1. The orthogonality relation (10.10) is, in
this case,

1L mirx nirx

J
sin sin dx = 0, m #

and can be proved immediately. The eigenfunction expansion theorem is,
in this case, the Fourier sine series representation theorem (see Theorem
8.2 and Problem 8.13, Chapter VII).

Example 10.2. The eigenvalue problem for the two-dimensional Lapla-
cian

0<x<a, 0<y<a
v(0,y)= v(a,y) =0,

v(x, 0) = v(x, a) = 0, 0 x a

was solved in Section 9. It is convenient in this case to use a double
indexing of the eigenvalues and eigenfunctions. The eigenvalues are
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Xmn = — (m2 + n2); m, n = 1, 2,
a2

with corresponding eigenfunctions

mirx . niry
Vmn = sin sin —; m, n = 1, 2

a a

The eigenvalues Xmm,m = 1, 2, ... have multiplicity 1. The eigenvalues Xmn,
m n; m, n = 1, 2 have multiplicity 2 since Xmn = and the eigen-
functions

mirx . niry . nirx . miry
sin sin—, sin sin

a a a a

are linearly independent and both correspond to Xmfl. The orthogonality
relation (10.10) is, in this case,

(10.13) i:i: sin sin sin sin dxdy = 0,

(m, n) (m', n'); m, n, m', n' = 1, 2,

(Problem 10.3). The eigenfunction expansion theorem is, in this case, the
representation theorem of a function of two variables by a double Fourier
sine series which was mentioned in Section 9. We have

(10.14) f(x,
=

amn sin sin 0 x a, 0 y a,

where

(10.15) amn = 4 y) sin sin dxdy.

Let us return now to our original initial-boundary value problem (10.1),
(10.2), (10.3). The general solution of the T equation (10.6), with A being
one of the eigenvalues of the eigenvalue problem (10.4), (10.5), is

(10.16) = cos + sin n = 1,2

Multiplying the eigenfunction by the functions we obtain the
sequence of functions

(10.17) t) = cos + B,, sin n = 1, 2,

each of which satisfies the wave equation (10.1) and the boundary condi-
tion (10.3). Each of the functions (10.17) represents a possible mode of
vibration in the domain fl. If the constants A,,, B,, tend to zero sufficiently
rapidly as n 00, then the superposition

(10.18) u(x, t) = v,,(x)[A,, cos t + B,, sin 1]
11=1
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will also satisfy (10.1) and (10.3). In order for (10.18) to satisfy the initial
conditions (10.2) the constants and must be chosen so that

(10.19) 4)(x) =

(10.20)
=

Thus and n = 1, 2, ... must be the coefficients of the eigen-
function expansions of the initial data 4) and iji respectively. From Theorem
10.1,

f J(10.21) = , =

f f[vn(X)]2dx

We conclude that, under appropriate smoothness conditions on 4) and
the solution of the initial-boundary value problem (10.1), (10.2), (10.3) is
given by the series (10.18) with coefficients given by (10.21).

Example 10.3. (Vibrations of a circular membrane.) For the study of
vibrations of a circular membrane of radius a it is convenient to use polar
coordinates. The initial-boundary value problem to be solved is

(10.22) — utt = 0; 0 r <a, 0 0 <t,

(10.23)

(10.24) u(a, 0, t) = 0; —iT 0 ir, 0 t.

We separate the space and time variables by looking for solutions of
(10.22) and (10.24) of the form

(10.25) u(r, 0, t) = v(r, 0)T(t).

The function v must satisfy the eigenvalue problem (10.4), (10.5) which in
polar coordinates has the form

(10.26) + + Xv = 0; 0 <r <a, 0

(10.27) v(a, 0) = 0, 0

while the function T must satisfy equation (10.6).
The simplicity of the domain fl = {(r, 0): 0 r <a, —IT 0 ir} allows

us to solve (10.26), (10.27) by the method of separation of variables. We
look for nontrivial solutions v(r, 0)of (10.26), (10.27) which are in C2(1l)
fl and have the form

(10.28) v(r, 0) = R(r)O(0).
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Following the usual procedure of separation of variables we find that 0 and
R must satisfy, respectively,

(10.29) 0" + = 0, —ir 0

(10.30) = 0(—ir), 0'(ir) 0'(—ir)

and

(10.31) r2R" + rR' + — p)R 0, 0 <r <a
(10.32)

I
R(0)

I

<oo, R(a) = 0,

where p. is the separation constant. Conditions (10.30) and the first of
conditions (10.32) follow from the smoothness requirements on v.

Problem (10.29), (10.30) is an eigenvalue problem. Conditions (10.30)
are known as periodic boundary conditions. The eigenvalues of the prob-
lem are

(10.33) = n2, n = 0, 1, 2,

with corresponding linearly independent eigenfunctions

(10.34) = 1, = cos nO, sin nO; n = 1, 2

Thus, the eigenvalue 0 is of multiplicity 1, while all the others are of
multiplicity 2.

For each fixed value n2 of /L, problem (10.31), (10.32) is an eigenvalue
problem of still another type: it has nontrivial solutions (eigenfunctions)
only for certain values of A (eigenvalues). Equation (10.31) with /L =

(10.35) r2R" + rR' + (Ar2 — n2)R = 0,

is Bessel's equation of order n with parameter A (see Section 1 of this
chapter). The details of finding the eigenvalues and eigenfunctions of
(10.35), (10.32) are tedious and we do not present them here (see, for
example, Churchill,5 Chapter 8). The functions known as Bessel's

nctions of the first kind of order n, have been extensively studied and
their values have been tabulated (see Equation (1.37)). Each vanishes
for an infinite sequence of positive values of x tending to +00. The
eigenvalues of (10.35), (10.32) are the positive roots A = = 1, 2,
of the equation

(10.36) = 0,

and the corresponding eigenfunctions are

(10.37) = n = 0, 1,2, ... ; / = 1,2

Let us return now to our original eigenvalue problem (10.26), (10.27).
Substituting (10.34) and (10.37) into (10.28) we obtain the eigenfunctions

(10.38) = cos nO, ('s./ r) sin nO;
n=0,1,2,...; j=1,2,...,
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corresponding to the eigenvalues

(10.39) n = 0, 1,2, ... ; j = 1,2
The eigenvalues X0i are of multiplicity 1. All the others are of multiplicity 2.
As a special case of the eigenfunction expansion Theorem 10.1, the
following expansion theorem can be proved: Suppose that f(r, 0) is C2
for 0 r a, —ir 0 ir, andf(a, 0) = 0 for —ir 0 ir. Thenf can be
represented by a series involving the eigenfunctions (10.38) of the eigen-
value problem (10.26), (10.27),

(10.40) f(r, 0) = (VX r) cos nO + r) sin nO]
n=O j=1

with the series converging absolutely and uniformly tof. For eachj = 1, 2,
the coefficients are given by

A f(r, r)

2

J f(r, r) nO rdrdO,
—ir o

Finally, let us return to the initial-boundary value problem (10.22),
(10.23), (10.24). The T equation (10.6), with A being one of the eigen-
values (10.39), has two linearly independent solutions

(10.42) = cos \/Xt, sin /Xt.
Multiplying (10.38) and (10.42), we obtain the collection of functions

cos nO cos

sin nO sin

L
n=O,1,2,...;j=1,2,...

each of which satisfies (10.22) and (10.24). It is left now as an exercise to
form a superposition of (10.43) satisfying, in addition, the initial conditions
(10.23) under appropriate conditions on 4) and iji (Problem 10.6).

Problems
10.1. Prove that eigenfunctions of (10.4), (10.5) corresponding to distinct

eigenvalues are orthogonal. [Hint: Prove (10.7), where V2u1 + X1u1

= 0, V2u2 + X2u2 = 0. Multiply the first of these equations by u2, the
second by u1, subtract, integrate over fl, use Green's second identity
and the fact that u1 and u2 vanish on afl.]

10.2. Assuming that the representation (10.11) is valid in the sense of
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uniform convergence, derive formula (10.12) for the computation of
the coefficients.

10.3. Prove the orthogonality relation (10.13).
10.4. Under the assumptions of Theorem 10.1 prove the "Parseval rela-

tion"

(10.44) f =J
[f(x)fdx.

10.5. Is there an expansion theorem in terms of the eigenfunctions of
problem (10.29), (10.30)?

10.6. Write out the series solution of the initial boundary value problem
(10.22), (10.23), (10.24).

10.7. Solve problem (10.1), (10.2), (10.3), if fl is the rectangular paral-
lelepiped in R3,

0<x<a, 0<y<b, 0<z<c.
10.8. Consider the "forced vibrations" problem in a domain 11 of

(10.45) V2u — Utt —f(x, t); x E fl, t > 0

(10.46) u(x, 0) = 0, u1(x, 0) = 0, x E fl
(10.3) u(x, t) = 0; x E nfl, t 0.

Use Duhamel's principle to obtain the (formal) solution

(10.47) u(x, t) = sin - r)dr]

where

1 f f(x,
= ,n = 1,2,...,

J[vn(X)]2dx

and n = 1, 2, ... are, respectively, the eigenvalues (10.8)
and corresponding orthogonal eigenfunctions (10.9) of the eigen-
value problem (10.4), (10.5). What is the solution of problem
(10.45), (10.2), (10.3)? [See remark in Problem 8.11.]

10.9. In Problem 10.8, suppose that the forcing function is

f(x, t) = F(x) sin wt.

(a) If w2 is not equal to any of the eigenvalues n = 1, 2,
derive the following formula for the solution of (10.45), (10.46),
(10.3),

(10.49) u(x, t) =
L — j

where the n = 1, 2, ... , are the coefficients of the expansion of
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F(x) in terms of the eigenfunctions n = 1, 2.
(b) If where is one of the eigenvalues, show that the

solution is given by (10.49) with the jth term in the series
replaced by

1.
(t — sin

(This is the case of resonance.)
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CHkPTER IX

The heat equation

The heat equation is the most important example of a linear partial
differential equation of parabolic type. The first two sections of this
chapter are devoted to the study of the initial-boundary value problem for
the heat equation in one space variable. The study of heat conduction in a
finite rod leads to this problem. In Section 1 we prove a maximum-
minimum theorem from which follow immediately the uniqueness of solu-
tion of the problem and the continuous dependence of the solution on the
initial and boundary data. In Section 2 we obtain the solution of the
problem by the method of separation of variables and Fourier series.
Problems with a variety of boundary conditions are also considered. Sec-
tion 3 is devoted to the study of the initial value problem for the one-
dimensional heat equation. In Section 4 we give a summary of the basic
results concerning the initial and initial-boundary value problems for the
heat equation in more than one space dimensions. An application to transis-
tor theory is presented in Section 5.

1. Heat Conduction in a Finite Rod. The Maximum-Minimum
Theorem and Its Consequences

Let us consider the problem of determining the temperature distribution
in a cylindrical rod of length L which is made of homogeneous, isotropic
material and has insulated cylindrical surface. If initially the temperature
does not vary over cross-sections perpendicular to the center-line, the
same will be true at later times. Consequently, if the center line occupies
the portion of the x-axis from x = 0 to x = L, the temperature u will be a
function of x and t only and will satisfy the one-dimensional heat
equation (see Chapter VI, Section 2). Assuming that the initial tempera-
ture distribution and the temperature at the ends x = 0 and x = L for t 0
are known, we are faced with the initial-boundary value problem

331
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(1.1) O<x<L, O<z

(1.2) u(x, 0) = 0 x L

(1.3) u(0, 1) = f1(t), u(L, 1) = 12(1); 0 1.

The functions 4, and 12 are assumed to be continuous and satisfy the
compatibility conditions

4(L) = 12(0).

A precise statement of the problem is: Find a function u(x, t) defined and
continuous in the closed strip 0 x L, 0 t and satisfying the heat
equation (1.1) in the interior of the strip, the initial condition (1.2) at the
bottom t = 0 and the boundary conditions (1.3) at the two vertical sides x
= 0 and x = L (see Fig. 1.1).

In this section we will prove a maximum-minimum theorem from which
follow immediately the uniqueness and continuous dependence of solution
on the initial and boundary data for the problem (1.1), (1.2), (1.3). In the
next section we will use the method of separation of variables and Fourier
series to solve the problem in the case of homogeneous boundary condi-

f2 0).

Ut — Uxx = 0

-

__________________

o u=Ø L x

Fig. 1.1
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Theorem 1.1. (Maximum-minimum theorem.) Let T be any number>
0. Suppose that the function u(x, t) is continuous in the closed rectangle R,

T,

and satisfies the heat equation (1.1) for 0 < x < L and 0 < t T. Then u
attains its maximum and minimum values on the lower base t = 0 or on the
vertical sides x = 0, x = L of R.

Proof. We prove the maximum part of the theorem first. The proof will
be by contradiction. Let M be the maximum value of u in R and suppose
that, contrary to the assertion of the theorem, the maximum value of u on
the lower base and vertical sides of R is M — €, where €> 0. Let (x0, t0) be a
point where u attains its maximum in R, u(x0, t0) = M. We must have 0 <x0
<L and t0 > 0. Let us introduce the auxiliary function

v(x, t) = u(x, t) + (x — xo)2.

On the lower base and vertical sides of R,

v(x, t) M — M —-v,

while v(x0, t0) = M. Therefore, the maximum value of v in R is not attained
on the lower base and vertical sides of R. Let (x1, t1) be a point where v
attains its maximum. We must have 0< x1 < Land 0< t1 T. At (x 1,t1),
v must satisfy the necessary conditions for a maximum, namely, = 0 if t1
< T or 0 if t1 = T, and 0. Hence, at (x1, t1),

Vt — Vxx 0.

On the other hand

Vt = U1 <0.

We have reached a contradiction, and the maximum part of the theorem is
proved. The minimum assertion is reduced immediately to the maximum
assertion by considering the function w = — u and noting that w has a
maximum value where u has a minimum. Since w satisfies all the assump-
tions of the theorem, it must attain its maximum value on the lower base
and vertical sides of R. Consequently u must attain its minimum value
there.

Corollary 1.1. (Uniqueness.) There is at most one solution of the initial-
boundary value problem (1.1), (1.2), (1.3).

Proof. Let u be the difference of any two solutions of the problem. Then
u satisfies (1.1), (1.2), (1.3) with zero initial and boundary data. From
Theorem 1.1, if T is any number> 0, u(x, t) = 0 for 0 x L and 0 t
T. Since T is arbitrary, u(x, t) = 0 in the whole strip 0 x L, 0 t.

Corollary 1.2. (Continuous dependence on data.) The solution of the
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initial-boundary value problem (1.1), (1.2), (1.3) depends continuously on
the initial and boundary data of the problem in the following sense: Let u
and a be the solutions of the problem with data 4), f1, and 4), 11,12,
respectively. Let T and be any positive numbers. If

max
I
4)(x) —

max I — I €, I f2(t) — 12(t)I

then

max u(x, t) — ü(x, t)I

The proof is left as an exercise.
The following consequence of the maximum-minimum theorem agrees

with physical intuition. Suppose that when t = 0, the maximum tempera-
ture in the rod is U and that at all subsequent times t > 0, the temperature
at the ends of the rod is U. Then at no point in the rod will the
temperature ever rise above U. This makes sense physically in view of the
well known fact that heat flows from hot to cool.

Just as in the case of the wave equation, the heat equation is invariant
under i-translation, that is, the form of the equation does not change if the
variable t is replaced by t' = t — t0 where t0 is any fixed number. Conse-
quently, if the initial time in a problem is the time t = t0, the above
translation will reduce the problem to one with initial time t = 0. An
important consequence of this is that the maximum-minimum theorem is
valid with R being any rectangle of the form

T;

u must attain its maximum and minimum values on the lower base t = t0 or
on the vertical sides x = 0, x = L of R. (See also Problem 1.4.)

In contrast with the wave equation, the heat equation is not invariant
under reversal of time. Indeed, under the substitution t' = —t equation
(1.1) becomes

= 0

which differs from the heat equation in an essential manner. As a conse-
quence, it turns out that, in general, the initial-boundary value problem for
the heat equation cannot be solved "backward" in time. (If the tempera-
ture at the ends of a rod is always known, then knowledge of the tempera-
ture in the rod at a given instant determines the temperature at subsequent
times but does not, in general, determine the temperature at previous
times.) We will see the reason for this in the next section. Here, we should
point out that the maximum-minimum theorem is "one-way" in time (see
Problem 1.5). In physical terms this property of the heat equation is
described by saying that heat conduction is an irreversible process.

Finally, we mention an obvious modification of the initial-boundary value
problem (1.1), (1.2), (1.3) which is finite in time. If the boundary data
functions f1(t) and f2(t) are known only over a finite interval of time 0 t
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T, then one can only ask for the determination of u(x, t) in the finite
rectangle 0 x L, 0 t T. Uniqueness and continuous dependence on
the data for this problem follow immediately from the maximum-minimum
theorem.

A word of caution: the letter t in the heat equation (1.1) does not
represent physical time. Remember that in Chapter VI, equation (2.7) was
simplified to equation (2.8) by changing the time scale: The quantity
(k/cp)t, with k, c, p being physical constants and t time, was replaced by t'
and then the prime was dropped. Thus, in order to return to physical
parameters the letter t in all formulas of this chapter should be replaced by
(k/cp)t.

Problems

1.1. Prove Corollary 1.2.
1.2. At time t = 0 the temperature in a rod of length L is everywhere zero.

During the time interval 0 t T1 the temperature at the two ends of
the rod is kept equal to zero. When t > the temperature at the ends
is gradually raised to 1000. Find the temperature u(x, t) in the rod
during the time interval 0 t

1.3. Solve the initial-boundary value problem

Ut — = 0; 0<x <L, t>O

u(x, 0) = a + (b — 0 x L
L

u(O, t) = a, u(L, t) = b; 0

where a and b are constants.
1.4. Let t0 be any number less than T and suppose that u(x, t) is continu-

ous in the rectangle R: 0 x L, t0 t T, satisfies the heat equa-
tion in the interior of R and at the top t = T, and vanishes on the lower
base t = t0 and vertical sides x = 0, x = L of R. Show that u(x, t) = 0
for 0 x L. Conclude that at any time T, the temperature distribu-
tion in a finite rod is uniquely determined by the temperature distribu-
tion at any previous time t0 and by the temperature at the two ends
during the time interval [t0, T].

1.5. Explain how the argument in the proof of Theorem 1.1 would fail to
prove a maximum-minimum theorem with the roles of the top and
bottom of the rectangle R reversed.

1.6. Suppose that u(x, t) is of class C2 in the closed strip 0 x L, 0 t
and satisfies the heat equation in the interior of the strip and one of
the two boundary conditions on each vertical side of the strip

u(O, t) = 0, or t) = 0; 0

u(L,t)= 0, or 0;

Show that for any T 0,

u2 dx u2 dx.
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[Hint: Derive the differential identity

— = — +

and integrate over the rectangle 0 x L, 0 t T.]
1.7. Use the result of Problem 1.6 to prove uniqueness of solution for each

of the following initial-boundary value problems, assuming the solu-
tion is of class C2 in the strip 0 x L, 0

0; O<x <L, O<t
u(x,O)=4(x);

(a) u(O, t) = f1(t), u(L, t) = f2(t); 0 � t,
or (b) t) = f1(t), t) = f2(t); 0

or (c) u(0, t) = f1(t), t) = f2(t); 0 t.

2. Solution of the Initial-Boundary Value Problem for the One-
Dimensional Heat Equation

Consider a cylindrical rod of length L with insulated cylindrical surface
and center-line occupying the interval [0, L] of the x-axis. Suppose that
when t = 0 the temperature in the rod is a known function of x and that for
all t 0 the temperature at the two ends of the rod is kept equal to 0. In
order to determine the temperature distribution in the rod for t 0 we
must solve the initial-boundary value problem

O<x<L, O<t,
(2.2)

(2.3) u(0, t) = 0, u(L, t) = 0; 0 t.

The function 4) is assumed to be continuous and vanish at the ends x = 0
and x = L. From the previous section, we know that this problem can have
at most one solution which, if it exists, must depend continuously on the
initial data In this section we will obtain the solution of the problem
using separation of variables and Fourier series. The method of solution is
exactly the same as the one used in Section 8 of Chapter VIII for solving
the initial-boundary value problem for the one-dimensional wave equa-
tion.

A function of the form

(2.4) u(x, t) = X(x)T(t)

will satisfy the heat equation (2.1) and the boundary conditions (2.3) if
X(x) satisfies

(2.5) X7'+AXO, O<x<L
(2.6) X(O) = 0, X(L) = 0

and T(t) satisfies

(2.7) T' + AT = 0, 0 <t
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where —X is the separation constant. We have already solved the eigen-
value problem (2.5), (2.6). The eigenvalues are

(2.8)

with corresponding eigenfunctions

flITX
(2.9) = sin—i:--, n = 1, 2

The general solution of the T equation (2.7) with X being an eigenvalue A,1
is

fl21T2

(2.10) = L2 n = 1, 2

Substituting (2.9) and (2.10) into (2.4) we obtain the infinite sequence of
functions

flITX
(2.11) t) = L n = 1, 2

each of which satisfies the heat equation (2.1) and the boundary conditions
(2.3). Hopefully, the initial condition (2.2) will be satisfied by a superposi-
tion of the functions (2.11),

00 nlrx -—1
(2.12) u(x, t) = sin—j-- e L

Let us postpone for a moment the consideration of questions of conver-
gence and differentiability of the series in (2.12). In order to satisfy (2.2)
the constants in (2.12) must be chosen so that

flITX
(2.13) 4(x) = L sin—,

n=1

i.e., the must be the coefficients of the Fourier sine series representation
of the function 4(x) on the interval [0, L]. From formula (8.40) of Chapter
VII,

2f . nirx
(2.14) =

J
4(x) sin —j-- dx.

Let us assume now that
/

satisfies the following conditions: (1) 4 is
continuous and has a sectionally continuous derivative on [0, L], and (2)
4(O) = 4(L) = 0. Then we know (Problem 8.13 of Chapter VII) that the
representation (2.13) with coefficients (2.14) is valid in the sense of
absolute and uniform convergence on the interval [0, U. Since

fl21T2

O<e L21 forall

the series in (2.12) with coefficients (2.14) converges absolutely and
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uniformly for 0 x L and t 0. Therefore the function u(x, t) defined by
this series is continuous in the closed strip 0 x L, t 0. Obviously
u(x, t) satisfies the boundary conditions (2.3). It remains to show that
u(x, t) satisfies the heat equation in the interior of the strip. To do this it suf-
fices to show that all the series obtained by termwise differentiation of the
series in (2.12), once with respect to t or twice with respect to x, converge
uniformly in any closed strip of the form 0 x L, t0 t with t0 being any
positive number, however small. But this follows from the Weierstrass M-
test using the fact that for any t0 > 0,

L
1 forall

provided n is sufficiently large. We have shown that the desired solution of
the initial-boundary value problem (2.1), (2.2), (2.3) is given by the series
(2.12) with coefficients given by (2.14).

Example 2.1. If the initial temperature in the rod is given by the saw-
tooth function

2U for
(2.15) 4(x) L

2

(L—x for

where U is a constant, and if the ends are always kept at temperature zero,
we find, using the Fourier sine series representation (8.41) of Chapter VII,
that the temperature in the rod will be given by

8U (—1)° . (2n + l)irx
(2.16) u(x, t)

2
sin e

ir L

We now state and prove a fundamental property of the solution of the
initial value problem (2.1), (2.2), (2.3).

Theorem 2.1. The solution u(x, t) of the initial-boundary value problem
(2.1), (2.2), (2.3) for the heat equation is of class when t> 0; i.e., the
partial derivatives of all orders with respect to x and t are continuous at
every point (x, t) with t > 0.

Proof. Since u(x, t) is given by the series (2.12) it suffices to show that
all series obtained from (2.12) by termwise differentiation any number of
times with respect to x or t converge uniformly when t t0 with t0 being any
positive number, however small. But this follows from the Weierstrass M-
test by noting that the absolute value of a typical term of any such series is
bounded by

(2.17)

when t t0. Since the are bounded, the series with terms (2.17)
converges for any value of the integer k.
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Let us look for example at the solution (2.16) of Example 2.1. The
derivative of this solution is not continuous at the point (x, t) = (L/2, 0).
In fact, since \u(x, 0) = where is given by (2.15), the initial
temperature distribution has a corner at x = L/2. However, as soon as
becomes positive, this corner disappears and u becomes infinitely smooth.

Theorem 2.1 is a special instance of a general result which asserts that
any solution of the heat equation is of class in the interior of its domain
of definition.

It should be noted that in proving Theorem 2.1, we only used the fact that
the coefficients are bounded. Thus, if the initial temperature distribu-
tion 4(x) had jump discontinuities, its Fourier coefficients would still be
bounded and the solution (2.12) would still be fort > 0. Of course, in
such a case, (2.12) would not be continuous in the closed strip 0 x L,

0, but it would still be the solution of the problem (2.1), (2.2), (2.3) in a
more general sense.

We can use Theorem 2.1 to prove that, in general, the initial-boundary
value problem for the heat equation cannot be solved "backward" in time,
not even over a very small time interval. Indeed, suppose that for some €>
0, u(x, t) is a continuous function in the closed rectangle 0 x L, —€

0 and satisfies

0<x<L, —€<t<0
u(0,t)=O, u(L,t)=0;

u(x, 0) = 0 x L,

where is continuous. Let

qi(x) = u(x, —€).

Now solve the forward problem with initial line t = —€ and initial data qc(x)
on this line. By uniqueness, the solution of this forward problem must be
equal to u(x, t) in the rectangle 0 x L, —€ t 0. From Theorem 2.1,
the solution of the forward problem must be for all t greater than the
initial time t = — €. In particular, u(x, 0) must be This is a contradiction
since u(x, 0) = unless of course were to begin with, and not
just continuous. Incidentally, it can be shown that even if the "backward"
problem were solvable, the solution would not depend continuously on the
initial data.

The initial-boundary value problem with nonhomogeneous boundary
conditions

(2.18) u(O, t) = f1(t), u(L, t) = f2(t); 0

can be reduced to the problem with homogeneous boundary conditions
(2.3) provided that one can find some solution u1(x, t) of the heat equation
(2.1) satisfying the boundary conditions (2.18). u1(x, t) need not satisfy any
particular initial condition. Indeed, it is easy to verify that the function

(2.19) u(x, t) = u1(x, t) + u2(x, t)
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will be the solution of the nonhomogeneous problem (2.1), (2.2), (2.18)
provided that u2(x, t) is the solution of the homogeneous problem (2.1),
(2.3) with initial condition

(2.20) u2(x, 0) = — u1(x, 0) 0 x L.

Problems 2.2 and 2.3 can be solved by this method.
Let us consider now the problem of determining the temperature distri-

bution in a rod with insulated ends. We must solve the initial-boundary
value problem for the heat equation (2.1) with initial condition (2.2) and
boundary conditions

(2.21) t) = 0, t) = 0, 0 t.

The proof of uniqueness of solution (under rather stringent conditions) was
outlined in Problems 1.6 and 1.7. Using the method of separation of
variables and Fourier series the solution of the problem is found to be

k2ir2a0
(2.22) u(x, t) = + cos —i-- e L

where ak are the coefficients of the Fourier cosine series representation of
the initial temperature 4(x) on the interval [0, L],

kirx
(2.23) ak =

J
cos_z_ dx, k = 0, 1, 2

Finally, let us consider the problem of determining the temperature

distribution in a rod with one end kept at temperature zero and the other
end insulated. We must solve the initial-boundary value problem for (2.1)
with initial condition (2.2) and boundary conditions

(2.24) u(0, t) = 0, t) = 0; 0 t.

After separation of variables, the eigenvalue problem to be solved is

(2.25) X"+XXO, 0<x<L
(2.26) X(O) = 0, X'(L) = 0.

It is easy to check that there are no non-positive eigenvalues of this
problem. When A > 0, the general solution of (2.25) is

X(x) = A1 cos + A2 sin

and the boundary conditions (2.26) will be satisfied if

A1=0,
The eigenvalues and corresponding eigenfunctions are

(2n — 1)2ir2
(2.27)

= 4L2
n = 1, 2,
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(2n — 1)irx
(2.28) = sin

2L
n = 1, 2.

The general solution of the T equation (2.7) with A being the eigenvalue A,1
is

(2n—1)2ir2

(2.29) =
I

n = 1, 2

Multiplying (2.28) and (2.29) we obtain the sequence of functions
(2n— 1)2ir2(2n—1)irx

— 4L2(2.30) t) = sin
2L

e , n = 1, 2,

each of which satisfies the heat equation (2.1) and the boundary conditions
(2.24). Hopefully, the initial condition (2.2) will be satisfied by a superpo-
sition of these functions,

(2n—1)2ir2(2n—1)irx - 2

(2.31) u(x, t) = C,, sin e
2L

In order to satisfy (2.2) the constants C,, must be chosen so that

(2n—1)irx
(2.32) 4)(x) = L C,, sin

L

Without using any general result on representations of functions by series
of eigenfunctions, we can show that the representation (2.32) is possible
and obtain a formula for the coefficients using only standard Fourier series
theory. The presence of 2L rather than L in (2.32) suggests that we extend
the function 4), which is defined on [0, LI, to a function defined on [0, 2L],
and represent the extended function by a Fourier sine series on the interval
[0, 2L]. It turns out that extending so that the resulting extension is
symmetric with respect to x = L gives the desired result. (Such an exten-
sion is also suggested by the observation that a temperature distribution
which is symmetric about x = L should result in no heat transfer across x =
L.) Let

233 - f4)(x) for
4)(x)

— — x) for x 2L.

The Fourier sine series representation of on [0, 2L] is

(2.34) = b,, 0 x 2L,

where

2 2L nx
(2.35) = Jo

sin dx.

It is easy to show (Problem 2.8) that, because of (2.33),
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2 fL - (2n—1)irx
(2.36) J

4(x) sin
2L

dx, = 0;

n = 1,2
Since = for 0 x L we conclude that (under appropriate
conditions on the representation (2.32) is valid with

2 1L . (2n—1)irx
(2.37) = j sin

2L
dx, n = 1, 2

We conclude that the solution of the initial-boundary value problem (2.1),
(2.2), (2.24) is given by (2.31) with coefficients given by (2.37).

Problems
2.1. The initial temperature distribution in a rod of length ir is given by

and both ends of the rod are always kept at zero temperature. Find
the temperature in the rod for t 0.

2.2. Consider a rod of length L and suppose that the end x = 0 is always
kept at temperature a while the end x = L is kept at temperature b.
If the initial temperature in the rod is given by the function
where = a and = b, find the formula for the temperature
in the rod for t 0. What is the limit of the temperature distribution
as t oo?

2.3. Solve the initial boundary value problem for the heat equation (2.1)
with initial condition (2.2) and boundary conditions

u(O, t) = a + Ct, u(L, t) = b + ct; 0

where = a and = b. [Hint: Consider the function a + (b —
a)x/L + Ct + (c/2)x(x — L).]

2.4. Use separation of variables and Fourier series to derive the solution
(2.22) of the problem (2.1), (2.2), (2.21).

2.5. Find the limit ast 00 of the solution of problem (2.1), (2.2), (2.3)
and of problem (2.1), (2.2), (2.21). Explain the answers in physical
terms.

2.6. If both ends of a rod are insulated and the initial temperature is
everywhere equal to 1000, what will the future temperature be?

2.7. Find the temperature distribution in a rod of length L with insulated
ends if the initial temperature distribution in the rod is given by

10 for

I L—a L+a
for

2 2

L+a
for

2

where U is a constant.



Heat Equation 343

2.8. Derive formulas (2.36) for the coefficients of the Fourier sine series
expansion (2.34) over the interval [0, 2L] for a function
satisfying (2.33).

2.9. Prove the following form of Duhamel's principle for the heat equa-
tion: Let u(x, t) be the solution of the following initial-boundary
value problem for the nonhomogeneous heat equation

(2.38) — = fix, t); 0 <x < L, 0 <t
(2.39) U(X, 0) = 0, 0 x L

(2.3) U(0, t) = 0, U(L, t) = 0, 0 t.

For each T � 0, let v(x, t; T) be the solution of the associated "pulse
problem"

0<x<L, T<t

v(x,T;T)=fix,T),

v(0, t; T) = 0, v(L, 1; T) = 0, T t.

(Note that in this problem the initial time is t = T.) Show that

U(x, t)
=

J v(x, t; T)dT.

2.10. Apply Duhamel's principle described in Problem 2.9 to obtain the
following formula for the solution of problem (2.38), (2.39), (2.3),

t n27T2

n7rx
U(x, t) = [J'fn(T)e L

dl-] sin—z—

where

• n7rx
=-jJ fix, T) sin—j—dx.

In particular, if

fix, t) = F(t) sin-v

show that

U(x, t)
= (J

F(T)eL2TdT) sin

2.11. Find the solution of the initial-boundary value problem (2.38), (2.2),
(2.3).

3. The Initial Value Problem for the One-Dimensional Heat
Equation

The problem of determining the temperature distribution in an infinitely
long cylinder with insulated cylindrical surface leads to the initial value
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problem for the heat equation

(3.1) Ut — = 0; —00 <x <00, 0 <t,
(3.2) U(x, 0) = —00 <x <o0.

The given function 4) is assumed to be continuous for —00 <x <00, while
the desired solution u(x, 1) is to be continuous in the closed upper-half
space —00 <x < oo, 0 t. If we impose no other conditions on u(x, t),
problem (3.1), (3.2) has infinitely many solutions. A demonstration of this
fact can be found, for example, in the book of A. Friedman,' pp. 30-3 1,
where nontrivial solutions of the heat equation vanishing on the initial line

= 0 are constructed. These solutions are unbounded, however. It turns
out that imposing the condition that u(x, t) must be bounded guarantees
the uniqueness of solution of (3.1), (3.2).

Initial Value Problem
Let 4)(x) be continuous and bounded for —00 <x Find a function

u(x, t) which is continuous and bounded in the closed upper half plane —00
< < 00, 0 t, and satisfies the heat equation (3.1) and the initial
condition (3.2).

As we will see, this problem is well-posed. The uniqueness and continu-
ous dependence of the solution on the initial data follow immediately from
the following extreme value theorem.

Theorem 3.1. (Extreme value theorem.) Suppose that u(x, t) is continu-
ous and bounded in the closed upper-half plane —00 <x <00, 0 1, and
satisfies the heat equation (3.1). Let

M = sup U(x, 0), m = inf U(x, 0).

Then

m U(x, t) M,

for every (x, t) with —00 <x < 00, 0 t.
Note that u(x, 0) may or may not attain its maximum or minimum values

at any point on the infinite interval —00 <x < 00• This is why we must use
the supremum and infimum of u(x, 0) over the interval —00 <x <co rather
than the maximum and minimum values of u(x, 0). A proof of Theorem
3.1, which is based on the maximum-minimum Theorem 1.1 for finite
rectangles, can be found in the book of Petrovskii,2 page 345. The proofs
of the following corollaries are left for the problems.

Corollary 3.1. (Uniqueness.) There is at most one solution of the initial
value problem (3.1), (3.2) which is continuous and bounded for —oo <x <
00, 0 t.

Corollary 3.2. A solution of the initial value (3.1), (3.2) which
is continuous and bounded for —0o <x <00, 0 1, depends continuously on
the initial data 4)(x).

The formula for the solution of the initial value problem (3.1), (3.2),
given in the following theorem, can be derived using Fourier integral
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representations, which are natural extensions of Fourier series representa-
tions to the case of (nonperiodic) functions defined over infinite intervals.
(See, for example, Churchill,3 §65 —66.)

Theorem 3.2. Let 4(x) be continuous and bounded for —00 <x <co. The
solution u(x, 1) of the initial value problem (3.1), (3.2), which is continuous
and bounded for —00 <x <00, 0 t, is given by

1 i

(3.3) u(x,t) =
when t>O

when t = 0.

Proof. Remembering that the function 4) is assumed to be bounded, it is
easy to see that for every (x, t) with t > 0, the integral in (3.3) converges.
The same is true with all the integrals obtained by differentiation under the
integral sign any number of times with respect to x or t. (This is due to the
presence of the negative exponential which goes to zero very rapidly as
± co.) In fact all these integrals converge uniformly in a neighborhood of
any point (x, t) with t > 0. Consequently u(x, t) is in the open upper-half
plane —00 <x <00, t > 0. Now, for each —oo <00, the integrand in
(3.3) satisfies the heat equation when t > 0 (Problem 3.3). By the principle
of superposition (formula (9.10) of Chapter V), the function u(x, t) defined
by the integral in (3.3) satisfies the heat equation (3.1) when t > 0. By
definition, u(x, t) also satisfies the initial condition (3.2).

Next, we show that u(x, 1) is bounded. Since 4) is bounded, it is enough to
show that u(x, t) is bounded for t > 0. Suppose that

for —oo<x<oo.

Then, when t > 0,

M M
Iu(x, t)I f e = f = M.

In the next to the last equality the change of variable = — x)/(2\/i)
was used. The last equality is the well known formula

(3.4) = 1.

To complete the proof of the theorem we must show that u(x, t) is
continuous in the closed upper-half plane t 0. Since we have already
shown that u(x, t) is in the open half-plane t > 0, it is only necessary to
show that u(x, t) is continuous at every point (x0, 0) of the x-axis; i.e.,

(3.5)
1_cO

e = 4)(xo).

The proof of of (3.5) is similar to the proof of (10.19) of Chapter VII and
we leave it as a (more difficult) exercise (Problem 3.4).

It can be shown that if the initial temperature 4)(x) is bounded and
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continuous except for a finite number of points where it has finite jumps,
then the bounded solution of the initial value problem (3.1), (3.2) is still
given by the integral in (3.3) when t > 0. Again, the integral defines a
function when t > 0. Moreover, for every point x0 where 4(x) is continu-
ous, the integral approaches as (x, t) (x0, 0).

Example 3.1. Find the solution of the initial value problem (3.1), (3.2) if
the initial temperature is given by

1U1 for x<O
= I for x>0.

When t > 0, the solution is given by

(3.6) u(x, t) = f e
+ —p) f e

After some manipulation involving changes of variables of integration,
(3.6) is simplified to

(3.7) u(x, t) = (U1 + U2) + (U2 — U1)

It is easy to see, using formula (3.4), that

U1 if XØ<O
(3.8) lim u(x, t) =

0) u2 if x0 > 0

Note also that

u(O, t) = + U2), 0 <t

and hence

lim u(O, t) = (U1 + LI2).

We close by noting the following consequence of formula (3.3) for the
solution of the initial value problem (3.1), (3.2). Suppose that the initial
temperature 4)(x) is zero everywhere except over a small interval (a, b) of
the x-axis where 4) is positive. When t > 0 the temperature at any pointx is
given by

1

u(x,t) e
(1

Since the integrand is positive, it follows that at any point x (no matter how
far x is from the interval (a, b)) the temperature becomes positive as soon
as t becomes positive. The physical meaning of this is that heat is conducted
with infinite speed. Of course we know from physical observation that this
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conclusion is false. The explanation of this paradox lies in the fact that the
assumptions under which the equation of heat conduction was derived are
not exactly verified in nature. Nevertheless, experimental measurements
show that the heat equation gives a good approximate description of the
process of heat conduction.

Problems

3.1. Prove Corollary 3.1.
3.2. Prove Corollary 3.2.
3.3. Prove that for each —oo <oc, the integrand in (3.3) satisfies the

heat equation when t > 0.
3.4. Prove (3.5).
3.5. Use Theorem 3.2 to show that

41
1,

and derive formula (3.4).
3.6. Derive (3.7) from (3.6).
3.7. Derive (3.8) from (3.7).
3.8 The error function

2 fZ

erf(z) F I e d'q
VIT JO

occurs frequently in the theory of probability and there exist exten-
sive tables of its values. In particular, its value at erf (x) = 1,
yields formula (3.4). Express the solution (3.7) of Example 3.1 in
terms of the error function.

3.9. The study of the temperature distribution in a semi-infinite rod with
its end kept at zero temperature or being insulated leads to the
following initial-boundary value problems

(3.9) uturx=O; 0<x<oo, 0<1
(3.10) u(x, 0) = 4(x), 0 x <00

(3.11) u(0, t) = 0, 0 t

or

(3.12) (0,1) = 0, 0 t.

The desired solution is to be continuous and bounded in the closed
first quadrant 0 x < 00, 0 I < Problems (3.9), (3.10), (3.11),
and (3.9), (3.10), (3.12) can be reduced to problem (3.1), (3.2) by
extending 4 over the whole x-axis to an odd or even function (see
Examples 7.1 and 7.2 of Chapter Viii).
(a) Derive the following formula for the solution of (3.9), (3.10),

(3.11) when t > 0,
1

(3.13) u(x,t) [e - e
]
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(b) Derive the following formula for the solution of (3.9), (3.10),
(3.12) when t > 0,

(3.14) u(x, t) = [e? +

(c) Verify directly that (3.13) and (3.14) satisfy (3.11) and (3.12)
respectively.

3.10. The temperature in a semi-infinite rod is initially constant, equal to
U0. If the temperature at the end x = 0 of the rod is kept equal to
zero, derive the formula

u(x, t) = U0 erf

for the temperature in the rod at any time t > 0. What happens to the
temperature in the rod as t —p oo? [Use the results of Problems 3.8
and 3.9.]

3.11. The temperature in a semi-infinite rod is initially zero. If the endx =
0 is kept at constant temperature U0 derive the formula

u(x, t) = U0 [i - erf

for the temperature in the rod.
3.12. If

[0 for O<x<L
for

derive the following formula for the solution of (3.9), (3.10), (3.11)

ir L—x
u(x, t) =— ( ) — erf

(2

3.13. (a) Formulate and prove Duhamel's principle for solving the initial
value problem for the nonhomogeneous heat equation

(3.15) —oo<x<oo, O<t
(3.16) u(x,O)=0, —°°<x<°°.
(b) Apply Duhamel's principle to find the following (formal) solu-

tion of (3.15), (3.16)

(3.17) u(x, t)
= ff e

T)

3.14. Verify that the function

u(x, t) = Cxt 2
e —°° <x <0O, 0 <t,
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where C is a constant, satisfies the heat equation (3.1) and assumes
zero initial values in the sense that for each x, —00 <x < 00,

lim u(x, t) = 0.

How do you reconcile this example with Corollary 3.1 which asserts
uniqueness of the problem (3.1), (3.2) with 4) = 0?

4. Heat Conduction in More than One Space Dimension
The results of our study of the heat equation in one space variable can be

generalized in a straightforward way to the heat equation in any number of
space variables.

First, let us consider the problem of heat conduction in three-dimen-
sional space. The initial value problem asks for a function u(x, t) = u(x1, x2,
x3, t) which is continuous and bounded for x E R3 and t 0, and which
satisfies the heat equation

(4.1) — + + = 0; x E R3, t > 0,

and the initial condition

(4.2) u(x, 0) = 4(x), x E R3.

The given function 4) is continuous and bounded in R3 and describes the
initial temperature distribution in space. Problem (4.1), (4.2) is well-posed
and its solution is given by

(43\ u(x JR3L 4t
/ '

/ 1
for t < 0

for t = 0.

This solution is for x E R3 and t > 0. If 4) is bounded but only piecewise
continuous, then the bounded solution of the initial value problem (4.1),
(4.2) is still given by the integral in (4.3) when t > 0. Again, this integral
defines a function when t > 0. Moreover, at every point x° E R3 where

is continuous, the integral approaches as (x, t) (x°, 0).
Next, let us look at the problem of heat conduction in a bounded body

with piecewise smooth boundary if the temperature at the boundary is kept
equal to zero. The study of this problem leads to the following initial-
boundary value problem in a bounded domain ci of

(4.4) xEfl, t>0
(4.5) u(x, 0) = 4)(x), x E ci

(4.6) u(x, t) = 0; x E 8fl, t 0.

The uniqueness and continuous dependence of the solution on the initial
data follows from a generalization of the maximum-minimum theorem to n
space dimensions (see Vladimirov4). Problem (4.4), (4.5), (4.6) can be
solved by the method of separation of variables and eigenfunction expan-
sions, which was described in Section 10 of Chapter VIII in connection
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with the corresponding problem for the wave equation. The (formal) solu-
tion is given by

(4.7) u(x, t) =

where A1, A2, ... are the eigenvalues (10.8) and v1(x), v2(x), ... are the
corresponding eigenfunctions (10.9) of the eigenvalue problem (10.4),
(10.5) of Chapter VIII while a1, a2, ... are the coefficients of the eigen-
function expansion of 4),

f

4) (4.8) are bounded, it can be shown, using
the properties of the eigenvalues and eigenfunctions, that the function
u (x, t) defined by (4.7) is in for x E fl and t > 0 and satisfies the heat
equation (4.4) and the boundary condition (4.6). If satisfies the stronger
conditions that 4) E and 4)(x) = 0 forx E afl, then it follows from the
eigenfunction expansion Theorem 10.1 of Chapter VIII that (4.7) also
satisfies the initial condition (4.5). In fact, in this case the function u(x, t)
defined by (4.7) is the solution of (4.4), (4.5), (4.6) in the strict sense that
u(x, t) is continuous for x E fl and t 0. However, if 4) has jump
discontinuities but is such that its coefficients (4.8) are bounded, (4.7) is
still the solution of (4.4), (4.5), (4.6) in a more general sense.

In Section 2 we applied the above method of solution of the initial-
boundary value problem to the case of the heat equation in one space
variable. We give here a further illustration of the method by applying it to
the study of heat conduction in a rectangular plate.

Example 4.1. Consider a rectangular plate of length a and width b and
suppose that the two surfaces of the plate are insulated while its four edges
are kept at zero temperature. If at t = 0 the temperature in the plate does
not vary across its thickness the same will be true at later times. To
determine the history of the temperature distribution in the plate we must
solve the initial-boundary value problem

(4.9) 0<x<a,O<y<b, 0<t
(4.10) u(x,y,O)=4)(x,y);

411
u(a,y,t)=O;
u(x, 0 0 t.

Using some of the'results of Chapter VIII, Section 9, it is easy to obtain the
following solution of (4.9), (4.10), (4.11),

m7rx r 1m2 n2\
(4.12) u(x, t) = Amn sin— sin— exp (—i- +—j)t

m,n=1 a b L \a bi
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where

4 ab miTx n7r
(4.13) Am,,

1010
(x, y) sin— dxdy; m, n 1, 2.

Example 4.2. Consider the following initial-boundary value problem
for the heat equation in a bounded domain of W1 with nonhomogeneous
but time-independent boundary condition,

x E
x E I 0.

This problem can be solved by the following method. Let v(x) be the
solution of the Dirichlet problem

V2v=0,
x E afl

and let w(x, t) be the solution of the initial-boundary value problem for the
heat equation with homogeneous boundary condition

(wt_V2w=0; xEfl, t>O
(4.16) <j w(x, 0) = 4)(x) — v(x), x E ci

w(x, t) = 0; x E t 0.

Then it is easy to see that

(4.17) u(x, t) = v(x) + w(x, t)

is the solution of (4.14). It is left as an exercise (Problem 4.9) to show that
as t —p oo, u(x, t) tends to the steady state temperature distribution v(x),
i.e.,

(4.18) lim u(x, t) = v(x), x E

Problems

4.1. Verify that (4.3) satisfies the heat equation (4.1) when t > 0.
4.2. If initially the temperature in space is constant, equal to U0, then

obviously the bounded solution of (4.1), (4.2) is u(x, t) = U0. Verify
that formula (4.3) gives this solution.

4.3. Find the solution of (4.1), (4.2) if

IL!1 for x3<0
U2 for x3 > 0.

4.4. State the well posed initial value problem for the heat equation in
two space variables and write down its solution.

4.5. Derive the solution (4.12) of problem (4.9), (4.10), (4.11).
4.6. Formulate and solve the problem described in Example 4.1 for a

circular plate of radius a instead of a rectangular plate. [Use polar
coordinates and Example 10.3 of Chapter VIII.]
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4.7. Cooling of a spherical body. The temperature in a spherical body of
radius a is initially constant, equal to U0. At all subsequent time the
boundary of the solid is kept at zero temperature. Obviously the
temperature u in the solid will depend only on the distance r from the
center of the body and the time t, i.e., u = u(r, t). Show that

2aU0 • nrrr
u(r,t) sin—e

IT n=1 nr a

4.8. Solve Problem 4.7 if the surface of the spherical body is insulated
instead of being kept at zero temperature.

4.9. Prove (4.18).
4.10. Heating of a spherical body. The temperature in a spherical body of

radius a is initially zero. At all subsequent time the boundary of the
body is kept at constant temperature U1. Use the result of Problem
4.7 to find the temperature u(r, t) in the body.

4.11. Formulate and find a formula for the solution of the initial-boundary
value problem for the heat equation in the half-space of points (xb
x2, x3) with x3 > 0, if
(a) the boundary x3 = 0 is kept at zero temperature,
(b) the boundary x3 = 0 is insulated.

4.12. Consider the initial-boundary value problem for the nonhomoge-
neous heat equation in a bounded domain fl of W (there are heat
sources in ci),

(4.19) — V2u =J(x, t); x E ci, t> 0
(4.20) u(x, 0) = 0, x E

(4.6) u(x, t) = 0; x E 3fl, t 0.

Generalize Duhamel's principle described in Problem 2.9 and derive
the following formula for the solution of (4.19), (4.20), (4.6)

(4.21) u(x, t)
=

where A1, A2, ... are the eigenvalues (10.8) and v1(x), v2(x), ... are the
corresponding eigenfunctions of the eigenvalue problem (10.4),
(10.5) of Chapter VIII, and

I fix,
(4.22)

fa
4.13. Find a formula for the solution of (4.19), (4.5), (4.6).
4.14. Describe a method of solution of the problem

xEfl, t>O
u(x, 0) = 4(x), x E ci,
u(x, t) = fix), x E 8fl, t 0.
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4.15. Let u(x, t) be the solution of the heat conduction problem

Ut — V2u = 0, x E fl, 0 <t
u(x, 0) = x E
U(X, t) = 0, x E 8fl, 0 t

where fl is a bounded domain in R3 with smooth boundary afl.
Consider a portion F of the boundary surface 8fl. Show that the total
amount of heat flowing across F, i.e.,

= 10
do-]dt,

is given by

where h is the solution of the Dirichlet problem

V2h=0, xEfl,

Ii, xEF
xE8fl—F.

h is called the harmonic measure of the surface F. [Hint: Apply
Green's identity to u and h].

5. An Application to Transistor Theory
As we mentioned in Chapter VI, the heat equation arises in diffusion

processes other than the diffusion of heat. The diffusion of charges in
transistors is one phenomenon in which the heat equation occurs. For
example, the calculation of certain electrical parameters of a p-n-p transis-
tor with an exponentially graded base requires the solution of the following
initial-boundary value problem (see Lindmayer and Wrigley5):

(5.1) Pt — — = 0; 0 <x < L, 0 <t,

KL [1
(5.2) p(x,0)=—

IDL J

(5.3) p(O, t) = p(L, t) = 0, 0 t.

The function p(x, t) describes very closely the concentration of excess holes
(p ositive charge carriers) at time t and position x in the base of the
transistor, which occupies the interval 0 � x � L. The constants K, D and

are all positive, with = 0 being permitted as a limiting case.
We will first construct a series solution of the problem (5.1), (5.2), (5.3)

and then use this solution to compute the reclaimable charge, a quantity
which is required in certain transistor calculations. This example demon-
strates that series solutions can be used to obtain information of practical
value.
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By following the technique outlined in Problem 5.1, the equation (5.1) is
found to have solutions of the form

(5.4) p(x, t) = e2'- 4L2' u(x, t),

where u satisfies the heat equation

(5.5) — = 0; 0 <x < L, 0 <t.
It is easily seen from (5.2), (5.3) and (5.4) that U must satisfy the initial

condition

(5.6) u(x, 0) = [1 — L)] 0 x � L,

and the boundary conditions

(5.7) U(O, t) = U(L, t) 0, 0 � t.
The initial-boundary value problem (5.5), (5.6), (5.7) was solved in Sec-
tion 2. Remembering to replace t by Dt in the formula (2.12) for the
solution (see the last paragraph of Section 1), we find

nT,-x
U(x, t) = L sin e L

L

where the constants are the Fourier sine series coefficients of the func-
tion given by (5.6). The coefficients are easily computed (Problem
5.2), with the result

2KL (1 — nrr • nri-x
(5.8) 2 2 2D nrr L

The concentration p is found to be

2irKL (1 —
e L 2 2

sin—
D nri- L

(5.9)
r D

•exp [ +)
For fixed x, 0 � x � L, the function p(x, t) given by describes the

manner in which the concentration of excess holes at position x collapses as
This collapse of hole concentration gives rise to a current 1(t), the

emitter discharge current, which is given by

(5.10) 1(t) = Px(X, t) 0 <t,

where is a constant.
Because of the presence of the exponential time factors in the series

(5.9), the derivative px(O, t), 0 <t, can be computed by termwise differen-
tiation of this series (see Section 2). In this way we obtain
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(5.11) 1(t) = 21,
(1 —e'7)

exp
[—

+

so long as t > 0. Observe that the series (5.11) does not converge for t =
0.

A physical quantity of interest in transistor design is the reclaimable
charge Q, defined by the improper integral

rR
(5.12) Q = J

1(t)dt = urn
J

1(t)dt.

We will derive a simple, closed form expression for Q. First, the improper
integral (5.12) for Q can be easily evaluated by substituting the series
(5.11) for 1(t) into (5.12) and integrating termwise (Problem 5.3). This
produces a series expression for Q,

(5 13)
= (1 —

r
D i) Ln2ir2 +

The numerical series appearing in (5.13) can be expressed in closed form
by an appropriate application of Parseval's relation. In fact, the terms of
the series in (5.13) are precisely the squares of the Fourier sine coefficients
of the function

D

i —

which is easily seen from (5.8). By applying Parseval's relation to the
function and using the expression (5.6) for it is found that
(Problem 5.4)

sinh
— 1

(5.14) = i: dx =
—

It now follows from (5.13) and (5.14) that Q may be written in the
convenient form

1sinh
—QIL(le)L —

D ,, 1

This equation for Q is used in the study of transistor design (see Lindmayer
and Wrigley,5 Chapter 4, §4).

Problems

5.1. Consider the parabolic equation

V1 — + by) = 0
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where a, b and k are real constants and k > 0. This equation can be
reduced to the heat equation by introducing the new dependent
variable u through the relation

Show that if

v(x, t) = u(x, t).

and /3=k(a2+aa+b)

then u must satisfy the heat equation

Ut — 0.

5.2. Obtain the Fourier series expansion (5.8).
5.3. Carry out the derivation of (5.13) from (5.11) and (5.12). First

compute
JR

1(t)dt for 0 < R and then perform the limiting

operations. Justify all steps of the computation.
5.4. (a) Show that for an odd sectionally continuous functionf(x), —L <

x <L, Parseval's relation (8.34) of Chapter VIII can be written
in the form

(b) Derive (5.14).
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CHkPTER X

Systems of first order linear
and quasi-linear equations

In this chapter we study systems of linear and quasi-linear partial
differential equations of first order. Such systems arise in many areas of
mathematics, engineering and the physical sciences. In Section 1 we de-
scribe five examples and then introduce a useful matrix notation. In
Section 2 we define linear hyperbolic systems in two independent variables
and then show how the introduction of new unknowns reduces such
systems to a canonical form in which the principal part of the ith equation
involves only the ith unknown. In Section 3 we define the characteristic
curves of a linear hyperbolic system and observe that the principal part of
the ith equation of the system in canonical form is actually the ordinary
derivative of the ith unknown along the ith characteristic curve. This ob-
servation is the basis of the method of characteristics for solving the initial
value problem for the system. An application to the system governing
electrical transmission lines is discussed. In Section 4 we present a brief
discussion of general quasi-linear hyperbolic systems. Finally in Section 5
we study in some detail a quasi-linear hyperbolic system of two equations
in two unknowns which governs the one-dimensional isentropic flow of an
inviscid gas.

1. Examples of Systems. Matrix Notation
Systems of first order partial differential equations arise in many areas of

mathematics, engineering, and the physical sciences. We begin this section
by describing a few important examples.

The Cauchy-Riemann equations

(1.1) 0x 0y

I 3u dv
I —+—=O
L8Y 8x
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play an important role in the study of analytic functions of a complex
variable (see Churchill,' Chapter 2). Equations (1.1) form a system of two
equations in the two unknown functions u = u(x, y) and v =v(x, y) of the
two independent variables x and y.

In electrical engineering, the study of transmission lines leads to the
equations

1 81 dE1 L—+—+RI=O
) 0t 8x

1 + + GE = 0
L 8t 3x

(see Sokolnikoff and Redheffer,2 p. 465). The variable x denotes the
directed distance along the transmission line from some fixed point on the
line; t denotes time. The electrical properties of the line are assumed to be
known and depend only on x. C = C(x) is the capacitance to ground per
unit length, L = L(x) is the inductance per unit length, R = R(x) is the
resistance per unit length and G = G(x) is the conductance to ground per
unit length. I = I(x, t) and E = E(x, t) are, respectively, the current and
potential at the point x of the line at time t. Equations (1.2) form a system
of two equations in the two unknowns I and E and two independent
variables x and t.

The study of fluid dynamics leads to many systems of first order partial
differential equations. The form of the system that governs a particular
fluid flow depends on the assumptions made for that flow. For example,
the two-dimensional motion of a perfect inviscid fluid is governed by
Euler's equations of motion,

8u 8u 8u ldp
— + u — + V — + —— 0
8t 8x 8y p8x
dv dv 0v l8p
— + u— + V— +—— = 0
8t 8x 8y pdy

0
at 8x

— (R) + u (P-) + v (P-) =0.
0t p" 8x pY t3y p"

This is a system of four partial differential equations in the four unknown
functions u, v, p and p and three independent variables x, y and t. u = u(x,
y, t) and v = v(x, y, t) are the x andy components of the velocity of the fluid
at the point (x,y) at time t, whilep = p(x,y,t) andp = p(x,y, t) are the
pressure and density of the fluid. y is a constant greater than 1 known as
the ratio of specific heats. A derivation of (1.3) can be found in most books
on fluid mechanics or in Garabedian,3 Chapter 14.

In Section 4 of this chapter we will study in some detail the one-
dimensional isentropic (or homentropic) flow of an inviscid gas. This flow is
governed by the equations
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(au du c2apI —+u—+—-—=O
(1.4)

3t 3x p 3x

Idp i3p 3u
I — + U— + p— = 0.
Ldt dx 3x

Here u = u(x, t) and p = p(x, t) are the velocity and density of the gas at
position x and time t while c = c(p) is the local speed of sound, which is
assumed to be a known function of p. (Again, see Garabedian,3 Chapter 14
for a derivation.) Equations (1.4) form a system of two equations in the
two unknowns u and p and two independent variables x and t. If the
assumption of constant entropy is dropped, the flow is said to be nonisen-
tropic (or nonhomentropic) and is governed by the system of three equa-
tions in the three unknowns u, p, p,

3u 3u lap
— + U — + —— = 0
at pax

(1.5)
at ax

+ + = 0.
at ax ax

Here u, p andc denote the same quantities as in (1.4), while p = p(x, t) is
the pressure of the gas at positionx and time t (see Becker,4 Chapter 3).

In this book we limit our study of systems to those which consist of m
equations in m unknowns and only two independent variables, and which
are of the form

au, au1 au2 3Um
(1.6) —+aji------+a12—+•••+ajrn—-—-+bj=O,

ax
i=1,2,...,m.

Each of the unknowns u1 = u1(x, t), I = 1, 2, ... , m, is assumed to be a
function of the two independent variablesx and t, while the coefficients au,
b1 may be functions of the unknowns as well as of x and t,

= t, U1, ... , b1(x, t, U1, ... , Urn) i,j = 1, 2, ... , m.

We have chosen to use the letter t rather than y since this variable usually
indicates time in physical applications. Note carefully that the system (1.6)
has a special form with respect to the variable t: the ith equation contains
the derivative with respect to t of u2 only, and this derivative has unit
coefficient.

It is easy to see that the systems (1.1), (1.2), (1.4) and (1.5) are special
cases of the general system (1.6). For example (1.4) has the form (1.6) with
m = 2, u1 = U, u2 = p, and

a11 = u1, a12 = c2(U2)/U2, a21 = U1, a22 = U2, b1 = b2 = 0.

The classification of the first order system (1.6) according to linearity is
similar to the classification of single first order equations (see Chapter III,
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Section 1). If the coefficients actually depend on the unknowns u1,
Urn, the system is called quasi-linear. If the a13 do not depend on u1, ... , urn,
and the b1 depend linearly on u1, ... , urn, the system is said to be linear. If
the are independent of u1 Urn, and the b, depend on U1, ... , urn but not
linearly, the system is called almost linear. Systems (1.1) and (1.2) are
linear while (1.4) and (1.5) are quasi-linear. Note that the derivatives of
the unknowns appear linearly in (1.6). A system of first order equations in
which the derivatives appear nonlinearly is said to be nonlinear.

The system (1.6) can be written in a more convenient and compact form
by introducing matrix notation. Let u and b denote the column vectors

U1 b1

U2 b2

b=

urn bm

and A the m Xm matrix

Ia11 . . . aim

A = rn =1: :

Lami . . . arnm

Of course we are dealing here with vector and matrix functions; each
component or entry is a function. Remembering the definition of matrix
multiplication and that differentiation means differentiation of each com-
ponent or entry, it is easy to see that the system (1.6) can be written in the
form

(1.7) —+A(x,t,u)--—-+b(x,t,u)=O.
at ax

In (1.7) we display the variables of A and b to remind us that they may
depend not only on the independent variables x and t but also on the
unknown u.

As an example, the system (1.4) can be written in the form

(1.8) + 1u c2/plaIul = 10
3t [pJ [p U iax [pj [0

which is a special case of (1.7) with

u = 1"l, A = 1u c21P1 b = 10
LPJ [p UJ LO

We close this section with the definition of solution of the first order system
(1.7). Since U 1S rn-dimensional, A (x, t, U) and b(x, t, u) are functions of m
+ 2 variables. We assume that these functions are defined in some domain
fl in Rm+2. Naturally, a matrix or vector function is said to be of class in
some domain if each of its entries or components are of class in that
domain.
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Definition 1.1. A solution of the system (1.7) in a domain Il of R2 is a
(vector) function u = u(x, t) which is defined and C' in 11 and is such that
the following two conditions are satisfied: -

(i) For every (x, t) E 11, the point (x, t, u(x, t)) is in the domain fl of A
and b.

(ii) When u = u(x, t) is substituted into (1.7), the resulting (vector)
equation is an identity in (x, t) for all (x, t) in 11.

Problems

1.1. Write the systems (1.1), (1.2) and (1.5) in matrix notation.
1.2. Consider the telegraph equation of Example 2.5 of Chapter V,

1
—--j-utt + aut + bu = 0.

C

Let u1 = u, u2 = u3 = and show that u1, u2, u3 must satisfy the
system of three equations,

3u1
— u3 = 0

at

(1.9)
8t 3x

8u3 /8u2
— c2(— + au3 + bu1) = 0.

8t \8x /
Write this system in matrix form. This example illustrates how a
higher order equation may be reduced to a system of first order
equations.

2. Linear Hyperbolic Systems. Reduction to Canonical Form
We study in this section linear and almost linear systems of m first order

equations in m unknowns and two independent variables of the form

(2.1) + t) + t, ... , urn) = 0; i = 1, 2, ... m.
at

In obvious matrix notation the system (2.1) has the form

au au
(2.2) — + A(x, t) — + b(x, t, u) = 0.

at ax

We assume that the coefficient matrix A (x, t) is of class C' in the domain of
the (x, t)-plane under consideration.

Just as in the case of a single partial differential equation, it turns out that
most of the important properties of solutions of the system (2.2) depend
only on its principal part + A(x, Since this principal part is
completely characterized by the coefficient matrix A (x, t), this matrix plays
a fundamental role in the study of (2.2). There are two important classes of
systems of the form (2.2) which are defined in terms of properties of the
matrix A (x, t). Recall that an eigenvalue of A is a root X = X(x, t) of the
characteristic equation
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a11 — X a12 ... aim
a21 a22—X ...

(2.3) det IA — All
: : :

= o,

ami am2 — X

and that for each eigenvalue X of A, there is at least one nontrivial column
vector p = p(x, t) such that

(2.4) Ap = Xp.

The vector p is known as an eigenvector of A corresponding to the
eigenvalue X.

Definition 2.1. The system (2.2) is said to be elliptic at the point (x, t) if
A(x, t) has no real eigenvalues. (2.2) is said to be elliptic in a domain fl of
R2 if it is elliptic at every point of fl.

The system of Cauchy-Riemann equations (1.1) is elliptic in R2. Indeed,
the matrix A for this system is

A FOl
L—i o

and the characteristic equation (2.3) is

X2 + 1 = 0,

which has no real roots. In this book we will not discuss elliptic systems any
further.

Definition 2.2. The system (2.2) is said to be hyperbolic at the point (x,
t), if A(x, t) hasm real and distinct eigenvalues X1(x, t), X2(x, t), ... , Xm(X, t).
(2.2) is said to be hyperbolic in a domain fl of R2 if it is hyperbolic at every
point of fl.

Since the eigenvalues Xk(x, t), k = 1, 2, ... , m, are assumed to be
distinct, it follows from a well-known theorem of linear algebra that the
corresponding eigenvectors

Plk(X, t)
P2k(X, t)

(2.5) Pk(X, t) = ; k = 1, 2 m,

Pmk(X, t)

are linearly independent. Remember that the eigenvector Pk corresponding
to the eigenvalue Xk is determined only up to a multiplicative constant. Any
multiple of Pk is also an eigenvector corresponding to Xk. (Caution: Usually
hyperbolicity is defined by requiring only that A has m real eigenvalues and
m linearly independent eigenvectors. If A has m real and distinct eigenval-
ues, the system (2.2)is sometimes said to be hyperbolic in the narrow sense
or strictly hyperbolic. For simplicity we will stick to Definition 2.2.)
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Example 2.1. Let a and b be positive constants and consider the system

r 8142

(2.6)
at 8X

I + b = 0.
8x

The matrix form of this system is

Oa U1 0

— + =
at

u2 b 0 u2 0

so that

[0 a
A [ho

The characteristic equation is

— ab = 0.

If we set c0 = the eigenvalues of A are X1 = c0 and X2 = —c0. The
system (2.6) is hyperbolic in the entire (x, t)-plane. The eigenvectors of A
corresponding to the eigenvalues X1 and X2 are easily found using (2.4).
They are

(2.7) = I I, P21

We will now show that if the system (2.2) is hyperbolic at a point (x, t), it
is possible to obtain a very simple canonical form of the system in a
neighborhood of (x, t) by introducing new unknowns. We make use of the
eigenvalues and eigenvectors of the matrix A. Let A be the m Xm diagonal
matrix with diagonal entries the eigenvalues of A, and let P be the m Xm
matrix with columns the corresponding eigenvectors (2.5) of A,

X1 0 ... 0 Pu P12 Pim
o X2 ... 0 P21 P22 •.. P2m

(2.8) A= • P=

0 0 •.. Pm1Pm2 Pmm

Using an implicit function theorem and the assumption that A is C', it can
be shown that the matrices A and P are C1 in some neighborhood of (x, t)
(see Petrovskii,5 §7). Consequently, since the eigenvalues of A are assumed
to be distinct at (x, t), they remain distinct in some neighborhood U of (x,
t), and the columns of P are linearly independent in U. From linear algebra,
P is nonsingular in U and if P' denotes its inverse, then
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(2.9) P'AP = A in U.

We introduce now the new unknown v by the relation

(2.10) v = P'u.
Then

(2.11) u=Pv
and

3u av aP au av aP
(2.12) —=P—+----v, —=P—+--—v.

at at at ax ax ax

Substituting (2.11) and (2.12) into (2.2) we obtain

av avP—+AP--+—v+A—v+b(x t Pv)=O.
at ax at ax

Finally, multiplying this equation from the left by and using (2.9) we
obtain the desired canonical form in the neighborhood U of (x, t),

(2.13) + A(x, + c(x, t,v) = 0,
at ax

where

aP\
(2.14) c=P'(—+ A— )v+P'b(x,t,Pv).

ax!
The simplicity of the canonical form (2.13) becomes apparent if we write it
out in component form,

av
(2.15) —+Xj(x,t)——+cj(x,t,vi,...,vm)=0, ,=1,2,...,m.

at ax

The principal part of the ith equation involves only the ith unknown v1.

Example 2.1 (continued). Since the system (2.6) is hyperbolic in the
whole of R2 and has constant coefficients, the transformation to canonical
form is valid in the entire (x, t)-plane. We have

A= 01
Lo —coJ

The new unknown v = P'u must satisfy the canonical form of system
(2.6),

av av
+ A = 0,

at ax

or

av1 av1
+ c0 = 0

(2.16)
at ax

av2 av2
— c0 = 0.

at ax
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The canonical form (2.16) is, in this case, particularly simple. Each equa-
tion involves only one unknown and can be easily solved by the methods of
Chapter III or Chapter V. The general solution of (2.16) is

v,(x, t) = fix — c0t)
(2.17)

v2(x, t) = g(x +

wheref and g are arbitrary C' functions of a single variable. Now, returning
to the unknowns u1 and u2 by using u = Pv, we obtain the general solution
of (2.6)

u,(x, t) = \[a[f(x — c0t) + g(x + c0t)]
(2.18)

u2(x, t) = \[b[f(x — c0t) — g(x + c01)].

Example 2.2. Consider the system

3u1 3u, 3u2
+ + x2 = 0

(2.19) 3t 3x

3u2 3u1 3u2
+ t2 + = 0.

3t 3x 3x

The matrix form of this system is

u1 1 x210 U, 0

— + I— =
t9t 2 13x

Uz t lj U2 0

so that

The characteristic equation is

(X — 1)2 — x2t2 =

and the eigenvalues of A are

= 1 + Ixti X2 = 1 — Ixti

The eigenvalues are distinct and the system is hyperbolic at every point of
the (x, t)-plane except at points of the x- and t-axes. Let us confine our
attention to the domain fl consisting of the open first quadrant x> 0, t> 0.
We know that we can transform (2.19) to canonical form in a neighbor-
hood of every point of fl. Actually in this case we can do so in the whole of
ft We leave it to the reader to show that in fl,

A 11 + xt p = [x xl, p-' =
1 — xtJ Lt —tJ 2xtLt —xJ

and that the new unknown v = P'u must satisfy the canonical form of
system (2.19) in fl,
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3 lvii 11 +xt 01 3 lvi
0 1

(2.20) +
it + x + xt2 t — x + xt2l lvii [01

2xt Lt — x — x12 t + x — xt2J Lv21 — LOS

Problems

2.1. Write the Cauchy-Riemann equations (1.1) in matrix form and obtain
the characteristic equation X2 + 1 = 0.

2.2. Verify the matrix product differentiation rule (2.12).
2.3. Supply all of the computational details in Example 2.2.
2.4. Show that if a solution (u1, u2) of system (2.6) is C2, then each of the

unknowns u1, u2 must satisfy the wave equation,

32u 32u
— ab = 0.

3x2

2.5. The study of long gravity waves on the surface of a fluid in a channel
leads to the linear system of two equations in the two unknowns v and

3v—+g—= 0
(2.21)

3t iLi

S03v
— + — + — V = 0.
3t b3x b

Here b and g are positive constants, S0 = S0(x) is a given positive
function representing the equilibrium cross-sectional area of the fluid
in the channel and S0' = dS0/dx (see Landau and Lifshitz,6 §13, for
details and derivation).
(a) Show that the system (2.21) is hyperbolic in the whole (x, t)-

plane.
(b) Introduce the new unknowns v1, v2 related to v and by

lvi

to obtain the canonical form

0

at
0

ax

(2.22) V b

i—I 3v1+v21 ro
1=1

V b L—vi + 3v2)j [o
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(c) Find the general solution of (2.21) if the channel cross-sectional
area is constant; i.e., S0' = 0. (Compare with (2.6).)

3. The Method of Characteristics for Linear Hyperbolic
Systems. Application to Electrical Transmission Lines

Consider the (almost) linear system (2.1) of m equations in m unknowns
and two independent variables which can be written in the matrix form

0u 0u
(3.1) — + A(x, t) — + b(x, t, u) = 0.

i3t 0x

The coefficient matrix A(x, t) is assumed to be C' in the domain of interest.
Just as in the case of a single equation, the definition of characteristic
curves of system (3.1) involves the principal part + A(x, of the
differential operator appearing in (3.1). This definition is stated in Problem
3.1 where the derivation of the following more direct definition is outlined.

Definition 3.1. A characteristic curve of system (3.1) is a curve in the (x,
t)-plane given by x = x(t), where x(t) is a solution of the differential
equation

dx
(3.2) = X(x, t),

with X(x, t) being an eigenvalue of the coefficient matrix A(x, t).

More briefly, a characteristic curve (or simply a characteristic) of (3.1) is
a solution curve of (3.2) with X(x, t) being an eigenvalue of A(x, t). Since
the system (3.1) is said to be elliptic if A(x, t) has no real eigenvalues, it
follows that elliptic systems, just like elliptic equations, have no character-
istic curves.

Let us suppose from now on that the system (3.1) is hyperbolic in a
domain of the (x, t)-plane. Then, in a neighborhood of any point (i, 1) of

the matrix A(x, t) has m distinct eigenvalues X1(x, t), X2(x, t), ... , t)
which are C' in that neighborhood since A(x, t) is assumed to be C1 in fl. It
follows from Theorem 4.1 of Chapter I that there are exactly m distinct
characteristic curves of (3.1) passing through 1), each curve correspond-
ing to an eigenvalue of A(x, t). The characteristic curve corresponding to
the eigenvalue X1(x, t), is the solution curve of the initial value problem,

(3.3) = X1(x, t), x(1) =

Since the eigenvalues are distinct, the characteristic curves are never
tangent. Moreover, at a point where an eigenvalue is zero, the correspond-
ing characteristic is parallel to the t-axis. However, a characteristic curve of
(3.1) can never be parallel to the x-axis. (This of course is due to the fact
that (3.1) is special with respect to the variable t.)

A curve C in the (x, t)-plane is said to be characteristic at a point (x°, t°)
with respect to the system (3.1) if there is a characteristic curve of (3.1)
which is tangent to C at (x°, t°). Note that the x-axis is nowhere characteris-
tic with respect to (3.1).
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Example 3.1. Consider the system (2.6) of Example 2.1. The eigenval-
ues of A are X1 = c0 and A2 = —c0. The characteristics corresponding to A1
are the solution curves of

dx
= C0,

which are the lines

x = c0t + C1.

The characteristics corresponding to A2 are the solution curves of

dx

which are the lines

x = —c0t + C2.

In this example the characteristics are straight lines because the coefficient
matrix A is constant. To each eigenvalue corresponds a one-parameter
family of characteristic lines, and through each point of the (x, t)-plane pass
two characteristic lines, one from each of these families.

In the previous section we saw that the introduction of new unknowns
makes it possible to transform the hyperbolic system (3.1) to its canonical
form

(3.4) + A(x, t) + c(x, t, v) = 0,
i3t

in a neighborhood of any point of fl. A(x, t) is the diagonal matrix of
eigenvalues of A(x, t), given by (2.8). Clearly, the characteristic curves of a
hyperbolic system remain invariant under transformation of the system to
its canonical form: the characteristic curves of the canonical form (3.4) are
the same as those of the original system (3.1). The component form of
(3.4),

(3.5) + t) + c1(x, t, v) = 0, : = 1,2, ... , m,
at

shows that the principal part of the ith equation of a hyperbolic system in
canonical form involves only the ith unknown v1.

We now make the following observation which is of fundamental impor-
tance in the study of hyperbolic systems: Along a characteristic curve
corresponding to the eigenvalue the principal part of the ith equation in
(3.5) is actually an ordinary derivative of the ith unknown v1. Indeed, let C1
be a characteristic curve corresponding to X1. By definition, C, is given by x
= where x1(t) is a solution of (3.2) with X = A1, i.e.,

(3.6) = X1(x1(t), t).

Let be the function t) restricted to
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(3.7) V1(t) = v1(x, t) = v1(x1(t), t).

Then

dV1(t) 3v1 dx1(t)= t) t)

and using (3.6),

dV.(t) 3v.
(3.8) = (x1(t), t) + X1(x1(t), t) (x1(t), t).

dt at

The right hand side of (3.8) is the principal part of the ith equation in (3.5)
restricted to the characteristic curve C1. It follows that the ith equation in
(3.5), when restricted to a characteristic curve corresponding to X1, is the
ordinary differential equation,

(3.9) + t, t)) = 0.

Example 3.1 (continued). The canonical form of system (2.6),

3v1 3v1— + c0 = 0
(2.16)

3t

3v2 3v2— — Co = 0
at

was derived in the previous section. Along the characteristics x = c0t + c1

corresponding to A1 = c0, the first equation in (2.16) is

= 0 where V1(t) = v1(c0t + c1, t).

Along the characteristics x = —c0t + c2 corresponding to X2 = —c0, the
second equation in (2.16) is

= 0, where V2(t) = v2(—c0t + c2, t).

The above observation, that the equations of a hyperbolic system in
canonical form are ordinary differential equations along the corresponding
characteristic curves, leads to two important results concerning the initial
value problem for the system: (i) the characteristic curves are exceptional
for the initial value problem, and (ii) the characteristic curves can be used
to solve the problem. The initial value problem for a system of first order
equations in two independent variables is analogous to the initial value
problem for a single first order equation. It asks for a solution of the system
which has given values on a given curve in R2.

Initial Value Problem
Let C be a given curve in the (x, t)-plane described parametrically by

the equations,
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x = x0(s), t ta(s); S E 1

where x0(s) and t0(s) are in C'(I). Let

4(s) =

be a given vector function in C'(I). may be thought of as defining a
vector function on the curve C. The initial value problem for the system
(3.4) asks for a vector function v v(x, t) which is defined in a domain of
R2 containing C, such that

(i) v = v(x, t) is a solution of (3.4) in fl,

(ii) On the curve C, v is equal to the given function 4), i.e.

(3.10) v(x0(s), t0(s)) = s E 1.

The curve C is called the initial curve of the problem while the function 4) is

called the initial data. Equation (3.10) is called the initial condition.

We will now show that if the initial curve C is a characteristic curve, say
of the system (3.4), then the initial value problem generally has no

solution. This is because the ith equation of the system, which is an
ordinary differential equation along C1, imposes a condition on the initial
data which are assigned on This condition is generally not satisfied,
because the initial data are assigned to the initial curve without any
reference to the system of partial differential equations. Indeed, since C, is
given by

i=t; tEl
with t being the parameter s, the initial condition (3.10) is in this case,

(3.11) t) 4)(t), t E 1.

The ith component of (3.11) is

(3.12) V1(t) = t El.
Substituting (3.11) and (3.12) into equation (3.9), which is the ith equation
of the system (3.4) along C1, we obtain

(3.13) + t, 4)(t)) 0.

Equation (3.13) is a condition on the initial data 4)(t). In general, the
assigned initial data will not satisfy this condition and consequently the
initial value problem will not have a solution (no existence of solution).
Incidentally, it can be shown that if, by accident or foresight, the assigned
initial data do indeed satisfy condition (3.13), then the initial value prob-
lem has infinitely many solutions (no uniqueness of solution). An illustra-
tion of these possibilities is described in Problem 3.2.
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Let us consider now the initial value problem for the system (3.4) with
the initial curve being nowhere characteristic. For simplicity let us suppose
that the initial curve is an interval (a, b) of the x-axis. The initial condition
is

(3.14) v(x, 0) = 4(x), a <x < b.
it can be shown that if the coefficients t) and the initial data are
C' while the functions c(x, t, v) are C2, then, in some domain of the (x, t)-
plane containing the interval (a, b), the initial value problem (3.4), (3.14)
has a unique solution which depends continuously on the initial data. In
other words the problem is well-posed. The proof of this result, which can
be found in the book of Petrovskii,5 § 10, uses the method of characteristics,
described below, to transform the initial value problem (3.4), (3.14) to a
system of integral equations, which in turn can be solved by the method of
successive approximations.

The method of characteristics proceeds as follows. Let 1) be a fixed
point with a <x < b and 1> 0. (The procedure when I < 0 is the mirror
image in the x-axis of what follows.) Through 1) pass m distinct
characteristics C1, C2 which are never parallel to the x-axis. 1ff is
sufficiently small, all of these characteristics will intersect the x-axis at
points in the interval (a, b) (see Problem 3.3). Let 0) be the point of
intersection of the ith characteristic C with the x-axis (see Fig. 3.1), and let

be the portion of between the points 0) and 1). Remember that
is given by the solution x = x1(t) of (3.3) and is the portion of C for

which 0 � t � 1, so that

Fig. 3.1

C:

(1,

b x
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(3.15) x1(O) = x1° and x1(l) =

Along C, the ith equation of system (3.4) is the ordinary differential
equation (3.9). Integrating (3.9) along which means integrating with
respect to t from t = 0 to t = 1, we obtain

(3.16) —
+ f t, t))dt = 0.

From (3.7) and (3.15),

(3.17) V1(f) = v1(x1(f), f)= 1),

and from the initial condition (3.14)

(3.18) V1(O) = 0) = v.(x7, 0) =

Substituting (3.17) and (3.18) into (3.16) and remembering that the result
is valid for every i = 1, 2 m, we obtain the system of integral equations

(3.19) 1) =
—

t, t))dt, i = 1, 2 rn.

Note that in (3.19) the points x1° and the functions depend on (i, 1).
Briefly, the method of successive approximations for solving the system

of integral equations (3.19) proceeds in the following manner. The first
approximation t) is assumed to have components

(3.21) (x, t) = i = 1, 2 m.

To obtain the next approximation t), (3.21) is substituted into the
right side of(3.19),

(3.22) 1) =
— f t, t))dt, i = 1, 2, ... ,

and the indicated integration is carried out. t) is then substituted into
the right side of (3.19) to get the approximation t), etc. It can be
shown that the sequence of approximations t), t), ... , v9x,

converges to the desired solution.
The computations involved in carrying out the method of successive

approximations are too difficult and the method, except for some espe-
cially simple cases, has little practical value in actually computing the
solution. A more useful method for finding approximations to the solution
is a finite difference scheme which uses the ordinary differential equations
(3.9) to compute approximate increments of the solution along linear
approximations of the characteristics. For details see Petrovskii,5 end of
§10.

Example 3.2. Consider the initial value problem

3v1 3v1 3v2 i3v2
(3.23) —+c0---—=0 ——c0—-=0,

at i3t

(3.24) v1(x, 0) = 41(x), v2(x, 0) = 42(x); —00 < 00,
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where and are given functions in C'(R'). The corresponding system of
integral equations (3.19) in this case is particularly simple:

v1(i, 1) = f1(x?), 1) =

The characteristic curve C1 corresponding to A1 = c0 and passing through
1) is given by x = + c0(t — 1), and its intersection with the x-axis is x1° =

— (see Fig. 3.2). The characteristic curve C2 corresponding to A2 = —c0

and passing through 1) is given by x = — c0(t — 1), and its intersection
with the x-axis is x2° = + c01. Therefore

v1(X, 1) = — c(0, 1) = + cJ),

and after dropping the bars we obtain the desired solution of the initial
value problem (3.23), (3.24),

(3.25) v1(x, t) = — c0t), v2(x, t) = + c0t).

Example 3.3. In Section 1 of this chapter we described how an electri-
cal transmission line is governed by the system (1.2). Let us consider now
an infinite transmission line with positive constant electrical parameters C,
G, R and L and suppose that initially the distribution of the current 1 and
potential E in the line is known. The problem is to determine 1 and E at
later time. We must solve the initial value problem for the system

81 10E R— + + —1 = 0,
at Lax L

0E 181 G— + —— + —E = 0
at C0x C

(3.26)

with initial conditions,

C2

xIo x20

Fig. 3.2
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(3.27) 1(x, 0) = fix), E(x, 0) = g(x); —00 <x < oo•

The system (3.26) is hyperbolic in the whole (x, t)-plane with constant
eigenvalues A1 = 1/\/LC and A2 = — Our first step is to trans-
form (3.26) to its canonical form. In terms of the new variables v1 and v2
related to 1 and E by

328 v'el[l [v11_ 1 r\/E

the canonical form of (3.26) is

(3.29)

RC+LG RC-LG v1 0

1 =

RC-LG RC+LG v2 0

(Problem 3.7). From (3.27) and (3.28), the new unknowns must satisfy the
initial condition

0) = + g(x)]

(3.30) 2v LC
, —0o <x < oo.

V2(X, 0) = L fix) - g(x)]

Following the method of characteristics for solving the initial value
problem (3.29), (3.30), let 1) be an arbitrary but fixed point in the
upper-half (x, t)-plane. The characteristic curves C1 and C2 corresponding
to A1 = and A2 = — and passing through 1) are the
lines,

(C1:x = x1(t) + —==(t — 1),
(3.31) \/LC

(C2:x = x2(t) — —

and these lines intersect the x-axis at the points

(3.32)
\/LC
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(Again see Fig. 3.2.) The system of integral equations (3.19) in this case is

= - - f[(RC + LG)v1(x1(t), t)

(333) + (RC — LG)v2(x1(t), t)]dt,

V2(X, = + - - LG)v1(x2(t), t)

+ (RC + LG)v2(x2(t), t)]dt,

where x1(t) and x2(t) are given by (3.31).
In general, in order to proceed any further with the computation of the

solution, it is necessary to know the specific functional form of the initial
data and employ a numerical approximation scheme. However, in the
special case in which the electrical parameters of the transmission line
satisfy the relation

(3.34) RC — LG = 0,

is is possible to obtain a general formula for the solution. This is due to the
fact that when (3.34) holds, the canonical form (3.29) is separated in the
sense that each equation involves only one of the unknowns v1, v2. These
unknowns restricted on the characteristics (3.31) are

(3.35) V1(t) = + (t — 7), t), V2(t) = — (t — 1), t).
\/LC \/LC

They satisfy the ordinary differential equations (3.9), which in this case are

dV1 R dV2 R
(3.36)

and the initial conditions (3.18),

(3.37) V1(0) = V2(0) =

Solving the two initial value problems (3.36), (3.37), we obtain,

(3.38) V1(t) = L V2(t) =

From (3.35),

(3.39) 1) = V1(f), 1) = V2(f).

Substituting (3.38) and (3.32) into (3.39) and finally dropping the bars we
obtain the solution of the initial value problem (3.29), (3.30) when (3.34)
holds,

t) = (x -
(3.40)

v2(x, t) = (x + t)e
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The solution of the original problem (3.26), (3.27) is obtained from (3.40)
using (3.28) and (3.30),

1(x, t)
= {

(x - t) + f (x
+

t)]

(341)

E(x, t)
= { [i - -

+
t)]

+11 ( - 1 ( + 1

Note that the solution (3.41) shows that in the case RC = LG the initial
data propagate along the line without distortion other than exponential
decay with increasing time. For this reason a line for which RC = LG is
called a distortionless line.

We close this section by pointing out certain aspects of the initial value
problem for hyperbolic systems which are very similar to those for the
wave equation. This is due to the fact that the wave equation is also
hyperbolic. First, note that the solutions of the problems in Examples 3.2
and 3.3 are valid in the whole (x, t)-plane. In general, the solution of the
initial value problem exists and can be determined in the whole (x, t)-plane
if the system is linear, has constant coefficients and the initial condition
is given on the whole x-axis. If the initial condition is given on a finite
interval (a, b) of the x-axis, it is clear from the method of characteristics
that the solution can be (uniquely) determined only in a "quadrilateral"
domain bounded by characteristics through the endpoints a and b (see
Problems 3.9 and 3.10). Next, Examples 3.2 and 3.3 also illustrate the
following important fact: The value of the solution at a point (x, t) depends
only on the values of the initial data over the part of the initial line cut off
by the characteristics through (x, t). This part of the initial line is known as
the domain of dependence of the solution. This concept and the dual
concept of range of influence of the initial data were discussed in detail in
connection with the wave equation (see also Problem 3.15).

Problems
3.1. (a) A direction defined by the non-zero vector is said to be

characteristic for the system (3.1) at the point (x, t) if

det
I

0.

Show that as a consequence of this definition, # 0 and
is an eigenvalue of A(x, t).

(b) A characteristic curve of system (3.1) is a curve such that at each
of its points the normal vector to the curve defines a characteris-
tic direction for (3.1) at that point. Use this definition to derive
Definition 3.1.
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3.2. (a) Consider the initial value problem for the system (2.16) with the
initial condition

v1(c0t, t) = t, v2(c0t, t) = 0.

Show that this problem has no solution.
(b) Consider the initial value problem for the system (2.16) with the

initial condition

v1(c0t, t) = 1, v2(c0t, t) = t2.

Show that this problem has infinitely many solutions.
3.3. Consider the hyperbolic system

av1 al)1
+ + V2 = 0

at ax

av2 av2— — x2— + v1 = 0.
at ax

This system is in canonical form with A1 = 1 and A2 = —x2.
(a) Find the equation of the characteristic C1 corresponding to A1

and passing through the point (t, 1). Also find the point of
intersection (x10, 0) of C1 with the x-axis.

(b) Find the equation of the characteristic C2 corresponding to
A2 and passing through the point (i) 1) = (1, 1), (ii) 1) =
(1, 1/2). Show that in case (i) C2 does not intersect the x-axis,
while in case (ii) C2 intersects the x-axis. Find the point of
intersection (x20, 0).

3.4. For the system of Problem 3.3, find the characteristic C2 correspond-
ing to A2 and passing through the point 1) = (0, 1).

3.5. (a) Verify by direct substitution that (3.25) satisfies (3.23) and
(3.24).

(b) If has a jump discontinuity at x = 0, show that v1, given by
(3.25), has a jump discontinuity across the characteristic line x =
c0t. Also describe the effects on the solution (3.25) of a jump
discontinuity of f2 and of jump discontinuities in the derivatives

and Conclude that discontinuities in the initial data or
their derivatives propagate along corresponding characteristic
curves. The solution (3.25) in this case is called a generalized
solution.

3.6. Use the general solution (2.17) to obtain the solution (3.25) of the
initial value problem (3.23), (3.24).

3.7. Derive the canonical form (3.29).
3.8. Verify by direct substitution that (3.41) satisfies (3.26) and (3.27).
3.9. Consider the initial value problem (3.23), (3.24) with the initial

condition (3.24) given only on the interval (0, L) of the x-axis rather
than on the whole x-axis. Find the quadrilateral domain in which the
solution can be determined.

3.10. Consider the initial value problem for the system of Problem 3.3
with the initial condition given on the interval (0, 1) of the x-axis.
Use the method of characteristics to show that in the upper half-
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plane the solution can be determined in the "triangular" domain
bounded by the line t = 0, the line x = t and the hyperbola x = 1/(1
+ t).

3.1 1. Consider the system (3.26) of Example 3.3 and assume that the
unknowns 1(x, t) and E(x, t) are of class C2.
(a) Show that 1 and E must satisfy the telegraph equation (see

Example 2.5, Chapter V),

(3.42)

(RC + LG)EI — RGE = 0.

(b) In the case of a distortionless line (RC = LG), show that eL' E

and e L J must satisfy the wave equation

— LCu11 = 0.

Conclude that E and 1 must have the form

(3.44) (x — t) + F2 (x t)]

where F1 and F2 are C2 functions of one variable.
3.12. Consider the initial value problem (3.26), (3.27) of Example 3.3

with C2 initial data and assume that the solution is C2.
(a) Show that 1 must satisfy the initial value problem for the tele-

graph equation (3.42) with initial conditions

1(x, 0) = fix), 0) = — — g'(x); —00 <x <00,

while E must satisfy (3.43) with

E(x, 0) = g(x), 0) = — g(x) — f'(x); —00 <X <00•

(b) In the case of a distortionless line, solve the initial value prob-
lems of part (a) to obtain the solution (3.41). [Hint: Use the
form (3.44) of E and 1.]

3.13. Consider a distortionless (RC = LG) semi-infinite transmission line
occupying the positive x-axis and suppose that at the end x = 0 the
current and potential are known functions of t for all t. In order to
determine the current and potential in the line we must solve the
initial value problem for the system (3.26) with initial condition
given on the t-axis,

1(0, t) = fit), E(0, t) g(t); —°o < <

As in Problems 3.11, 3.12, reduce this problem to a pair of initial
value problems for the telegraph equation and find the solution,
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1(x, t)
=

fit — x) + e fit + x)]

+ g(t — x) — g(t + x)]}eL

E(x, t)
=

fit — —
e fit + x)]

1 1
+ [eL g(t — x) + e

L

R R

[I-lint: t) = —[Gg(t) + Cg'(t)] = —Ce71
3.14. Show that a C' solution of the transmission line system (3.26) with

positive electrical parameters depending on x must satisfy the differ-
ential inequality,

(3.45) + (LP + CE2)1 0.

3.15. For a transmission line with L and C constant, use the energy
method described in Section 3 of Chapter VIII to obtain the domain
of dependence inequality,

- 7—1'
-1

j 7-T (LP + CE2) dx
J

LC (LI2 + CF}) dx
t=r t=o

which is true for every (1, t) in the upper half-plane and for every T
with 0 � T � 1. [Hint: Start with (3.45) instead of (3.8) of Chapter
VIII.] Prove uniqueness for the initial value problem and discuss
domain of dependence and range of influence.

3.16. Consider a finite transmission line extending over 0 � x � a, and
having positive electrical parameters which are continuous functions
of x.
(a) If the product 1E vanishes at the end points x = 0 and x = a for

all t � 0, use (3.45) to obtain the energy inequality,

f (LP + CE2) dx (LP + dx
0 t=r 0 (=0

which is valid for all T 0.
(b) Prove uniqueness of solution for the initial-boundary value

problem, with boundary conditions

1(0, t) = 41(t), E(0, t) =

1(a, t) = q1(t), E(a, t) = q2(t); t 0,

and initial condition

1(x, 0) = fix), E(x, 0) = g(x); 0 � x � a.
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4. Quasi-Linear Hyperbolic Systems
Let us consider the quasi-linear system of' m equations in m unknowns

and two independent variables which can be written in the matrix form,

(4.1) + A(x, t, + b(x, t, u) = 0.
at ax

The system (4.1) is said to be hyperbolic in a domain ci of the (x, t)-plane if
for every (x, t) in ci and for all possible solutions u of the system in ci, the
matrixA(x,t, u) hasm real and distinct eigenvalues X1(x,t, u), X2(x,t, u),

Xm(X, t, u). The characteristic curves of a quasi-linear system are
defined in a manner analogous to that for a linear system, except that now
a curve is said to be characteristic not only with respect to a system but also
with respect to a particular solution of the system.

Definition 4.1. A curve C in the (x, t)-plane is said to be characteristic
with respect to the system (4.1) and with respect to a solution u(x, t) of the
system if C is given by x = x(t), where x(t) is a solution of the differential
equation

(4.2) = X(x, t, u(x, t))

with X(x, t, u) being an eigenvalue of the matrix A(x, t, u).

The difference between linear and quasi-linear systems is fundamental.
For a linear system, the characteristic curves can be determined solely from
the coefficients of the system without any reference to a particular solution
of the system. For a quasi-linear system, a solution of the system must be
known in advance in order to determine the corresponding characteristic
curves.

Example 4.1. Consider the quasi-linear system (1.4) of gas dynamics,
the matrix form of which is

[ u [ u c2(p)/p 1 [ u] [ 0

(4.3) —I +1 I— =an i I laxLPJ LP U J fi

The matrix

A(x, t, u, c2(p)/p
]

has two real and distinct eigenvalues,

= u + c(p), X = u — c(p),

so that (4.3) is a hyperbolic system. The characteristic curves C÷ corre-
sponding to are solutions of

(4.4) u+c(p)
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while the characteristic curves C_ corresponding to X_ are solutions of
dx

(4.5) = u — c(p).

Equations (4.4) and (4.5) give the slopes of the characteristic curves but
these slopes cannot actually be determined unless the values of the solution
(u, p) are already known on the curves.

Just as in the case of linear systems, the characteristic curves of a quasi-
linear system are exceptional for the initial value problem. Note that since
the initial value problem assigns the values of the desired solution (initial
data) along the initial curve C, it is possible to determine whether or not C
is characteristic with respect to the system and with respect to the initial
data. If C is characteristic, the initial value problem either has no solution
or it has infinitely many solutions.

According to Definition 4.1, the characteristic curves of (4.1) are never
parallel to the x-axis. In particular, the x-axis is not characteristic and we
can consider the initial value problem for the system (4.1) with the initial
condition prescribed along an interval (a, b) of the x-axis,

(4.6) u(x, 0) = 4(x), a <x < b.

It is shown in the book of Garabedian,3 Chapter 4, §3, that under certain
smoothness assumptions on the coefficients and initial data, the initial
value problem (4.1), (4.6) is well-posed in the sense that in a domain of the
(x, t)-plane containing the initial interval (a, b), the problem has a unique
solution which depends continuously on the initial data. The proof consists
of three steps. First, by introducing m additional variables the system (4.1)
is reduced to a canonical form of 2m equations in 2m unknowns. The
canonical form looks like the linear canonical form (3.4) except that now
the diagonal matrix A is a function of x, t and of the unknowns. Next, by an
extension of the method of characteristics described in Section 3, the initial
value problem is transformed to a system of integral equations. Finally the
system of integral equations is solved by the method of successive approxi-
mations.

Instead of going any further into the study of general quasi-linear
systems, we will discuss in the next section the system (4.3) which arises in
gas dynamics.

Problem

4.1. Show that the system (1.5) has three families of characteristics which
must be solutions of the equations

dx dx dx—=u+c, —=u—c, —=u.
dt dt dt

5. One-Dimensional Isentropic Flow of an Inviscid Gas.
Simple Waves

In this section we will study in some detail the quasi-linear system (1.4)
of two equations in two unknowns and two independent variables,
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au 0u c2ap
— + U— +—— = 0
8t 8x pax

(5.1)
ap ap 0u— + U— + p— = 0
at ax ax

which, as we mentioned in Section 1, governs the one-dimensional isen-
tropic flow of an inviscid gas. In (5.1), u = u(x, t) and p = p(x, t) are the
velocity and density of the gas at position x and time t, while c2 = c2(p) is
assumed to be a known positive function of p. For example, for a perfect
gas

(5.2) c2(p) =

where y is the ratio of specific heats (y = 1.4 for air), and A is a constant
depending on the pressure and density of the gas at rest. The derivation of
equation (5,1) can be found in most books on fluid mechanics such as
Becker,4 or in the book of Garabedian.3

As we saw in Example 4.1, the system (5.1) has two families of charac-
teristics. The characteristics C÷ are solutions of

dx
(5.3)

while the characteristics C_ are solutions of

(5.4)

We know that the characteristics are exceptional for the initial value
problem. Also, across a characteristic the solution and its derivatives may
have jump discontinuities. (Remember that when the solution is not C' we
refer to it as a generalized solution; see Problem 3.5.) In fact, it can be
shown that the characteristic curves are the only curves across which the
derivatives of u and p can have jump discontinuities while u and p
themselves remain continuous. Therefore, the characteristics can be
viewed as describing the location of sound waves. Equations (5.3) and
(5.4) then assert that the velocity dx/dt of a sound wave differs from the
flow velocity u by ±c. For this reason c is referred to as the local speed of
sound.

It is clear from equations (5.3) and (5.4) that the characteristics depend
on the particular solution (u, p) of (5.1) and can be determined only if that
solution is already known. It would therefore seem hopeless to try to use
the characteristics to solve the system (5.1). Nevertheless the characteris-
tics can be used in an approximation scheme for finding the solution of the
initial value problem for (5.1). This approximation scheme, which we de-
scribe below, is based on the fact that certain functions of U and p remain
constant along characteristic curves. We obtain these functions in the next
paragraph.

The system (5.1) takes a more symmetric form if the new unknown
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(5.5) e= I
Jp0 P

is used in place of p. In (S.S)po is the density of the gas at rest. Since de/dp
= c(p)/p > 0, equation (5.5) can be solved for p in terms of €. It is easy
(Problem 5.1) to show that u and e satisfy the system of equations,

3u 3u—+ u—+c----=O
at 3x 3x

(5.6)
ae 3u ae

+ C — + U — = 0.
at 3x 3x

Now, adding and subtracting the equations in (5.6) we obtain

+ u) + (u + + u) = 0
at

- u) + (u - - u) = 0,
at

from which it follows that the quantities

(5.7) r = (€ + u), s = - u)

satisfy the equations

ar
— + (u + c) — = 0
at

(5.8)
as— + (u — c) = 0.
at

In view of equations (5.3) and (5.4) for the characteristics and C_, the
first of equations (5.8) states that the derivative of the quantity r along a
characteristic is zero, while the second of equations (5.8) states that the
derivative of s along a characteristic C_ is zero. It follows that r is constant
along the characteristics while s is constant along the C_ characteristics.
For this reason the quantities r and s are known as Riemann invariants.

Let us consider now the initial value problem for the system (5.1) with
the initial condition given on an interval of the x-axis,

(5.9) u(x, 0) = 41(x), p(x, 0) = 42(x); a <x <b,
where and 42 are given C' functions. We know that the initial value
problem (5.1), (5.9) has a unique solution in a domain of the (x, t) plane
containing the interval (a, b). We will describe an approximation scheme
for computing the values of the solution in this domain.

We note first that using the relations (5.5) and (5.7), the values of the
Riemann invariants r and s can be computed from the values of u and p,
and, conversely, u and p can be computed from r and s. In particular, from



384 Introduction to Partial Differential Equations

the initial condition (5.9), the values of r and s can be computed on the
initial interval (a, b). The basic idea of the approximation scheme is the
following: Let P and Q be two nearby points on the interval (a, b) (see Fig.
5.1) and suppose for a moment that we already know the characteristics.
Let R be the point of intersection of the characteristic through P and
the characteristic C_ through Q. Since r is constant on and s is constant
on C_, the values of r and s are known at R, since r(R) = r(P) and s(R) =
s(Q). The only problem is that we do not really know the characteristics C+
and C_. However, from (5.3), (5.4) and the initial condition (5.9), we
know the slopes of the characteristics at P and Q and therefore we can
approximate by the line tangent to C+ at P and C_ by the line tangent to
C_ at Q. These lines intersect at R', and R' is close to R if P and Q are close
to each other. Therefore, the values of r and s at R' are approximately
equal to their values at R,

r(R') r(R) = r(P), s(R') s(R) = s(Q).

Suppose now that the closed intervalAB is contained in (a, b). Then the
solution can be determined in a "triangular region" with base AB by using
the following procedure. Divide AB into n equal subintervals as shown in
Figure 5.2. Through each point P0, P1, ... , draw the straight lines
approximating the characteristics and through P1, P2, ... , draw the
straight lines approximating the characteristics C_. These lines intersect at
the points P01, P11, ... , and the approximate values of the solution at
these points can be computed according to the method described in the
previous paragraph. The process is now repeated starting with the points
P01, P1' and eventually, approximate values of the solution are
obtained on a grid of points of a "triangular" region with base AB. It can
be shown that as n 00, these approximate values converge to the actual

Fig. 5.1

R'
R

P Q
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Po,,

Fig. 5.2

values of the solution at points of the "triangular" region which are in the
domain of existence of the solution.

We should emphasize here that by a solution of the initial value problem
(5.1), (5.9) we mean a pair of C1 functions u and p satisfying (5.1) and
(5.9). Just as in the case of the conservation law (Section 5, Chapter III),
which is a single quasi-linear equation, the nonlinearity of the system of
equations (5.1) may cause the solution to develop discontinuities known as
shocks. The above approximation scheme for the computation of the
solution of the initial value problem is valid only in the part of the region
which is free from shocks.

As a first step towards the understanding of the general nature of
solutions of the system (5.1), it is useful to consider a linear approximation
of that system. Actually, such an approximation gives a reasonable descrip-
tion of small amplitude flows such as one-dimensional acoustical waves.
For these flows the values of u and p are not very different from their
values u = 0 and p = Po at the rest state of the fluid. Assume that the devia-
tions from rest, u, p — Po and c — c0, and the derivatives of u and p are of
the same order of magnitude which is small in comparison to Po and c0 =
c(po). Neglecting products of small order terms in (5.1), we obtain the
linear system

at p03x
(5.10)

3p 3u
— + Po — = 0.
at ax
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(Note that (5.10) also follows from (5.1) if the coefficients of the deriva-
tives of u and p are replaced by their values at rest.) With obvious changes
in notation, the linear system (5.10) is system (2.6), the general solution of
which is given by (2.18). The general solution of (5.10) is therefore

u(x, t) = [fix — c0t) + g(x + c0t)],

(5.11)

p(x, t) = [fix — c0t) — g(x + c0t)],

where f and g are arbitrary C1 functions of one variable. If g 0, (5.11)
represents a wave traveling undistorted in the positive x direction with
speed c0 and is called a forward wave. If 0, (5.11) represents a wave
traveling undistorted in the negative x direction with speed c0 and is called
a backward wave. Thus, c0 is the speed of propagation of small disturb-
ances, such as sound waves, and for this reason it is called the speed of
sound in the fluid at rest. The solution of the initial value problem for the
linear system (5.10) with initial condition (5.9) is easily obtained from the
general solution (5.11),

u(x, t) = - c0t) + + c0t)]

+ [42(x — c0t) — 42(x + cot)],

(5.12)
1

p(x, t) = [42(x — c0 t) + 42(x + c0 t)]

+ - c0t) - + c0t)].

According to (5.12), an initial disturbance splits into forward and back-
ward waves which travel undistorted for all t. This is due to the fact that
nonlinearities have been completely neglected. Actually the nonlinearities
of the original system (5.1) cause distortion of the traveling waves. This
distortion builds up with time and may eventually lead to shocks. The
usefulness of the linear approximation is thus limited to the study of very
small disturbances over limited intervals of time.

The manner in which the nonlinearities of system (5.1) cause distortion
of traveling waves is clearly demonstrated by a class of solutions of the
system known as simple waves. These waves occur when the velocity u can
be expressed as a function of the density p. Beginning with the assumption
u = u(p), we have

(5 13)
= du 3p 3u du ap

3x dpax' 3t

Multiplying the second equation in (5.1) by du/dp and using (5.13) we
obtain

au 3u fdu\2 t9p
—+ U— + p1—1 — = 0.
lit lix \dpl lix
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Comparing this equation with the first equation in (5.1) we find that

(du\2 — c2(p)

— p2

or

= +
dp — p

After integration,

u = ±
1

dp'
Po P

or

(5.14) u = ± €,

where is the function of p defined by (5.5). Thus, if (u, p) is a solution of
the system (5.1) such that u is a function of p, then this function of p must
be one of the two functions or —€.

Since simple waves are solutions of system (5.1) for which u = ±€, it is
more convenient to work with the equivalent system (5.6). From (5.5),
d€/dp = c(p)/p > 0, so that p can be expressed as a function of e, p = p(e).
Therefore, system (5.6) can be written in a form that involves u and e only,

(au 3u
I

—+u—+c(p(e))—=O
(5.15)

at 3X 3x

au a€u—=O.
at 3x 3x

In the first case, u = e, both equations in (5.15) reduce to the equation

3u 3u
+ [c(p(u)) + = 0

or

(5.16)
at 0x

where

(5.17) a(u) = c(p(u)) + u.
Equation (5.16) is a conservation law which we studied in Section 5 of
Chapter III. Its general integral is

(5.18) u=F(x—a(u)t)
where F is an arbitrary C1 function of a single variable. We conclude that
simple waves for which u = are forward waves traveling with speed a(u)
which depends on u. In the second case, u = —€, both equations in (5.15)
reduce to
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— - [c(p(-u)) - u]— =0
at

or

(5.19)
at ax

the general integral of which is

(5.20) u = G(x + a(—u)t).

Thus, simple waves for which u = —e are backward waves traveling with
speed a(—u) which depends on u.

Simple waves are traveling waves whose profiles become distorted with
time. This is due to the fact that the speed of propagation of each point of
the u-profile depends on the value of u at that point. Any two points of the
profile with different values of u travel with different speeds. The larger the
amplitude of the wave, the more pronounced is the distortion. Writing
(5.17) in the form

(5.21) a(u) = c0 + [c(p(u)) — c0] + u

shows that for small amplitude flows the speed of propagation is nearly
equal to the constant value c0, since for such flows the last two terms in
(5.21) are very small in comparison to c0. It follows that over short
intervals of time, simple waves of small amplitude behave almost like the
undistorted traveling waves of the linear approximation theory. However,
the last two terms in (5.21) always cause some distortion which builds up
with time and may eventually lead to the formation of shocks. The follow-
ing discussion of simple waves in a perfect gas will further illuminate this
conclusion. At this point the reader should review Sections 5 and 6 of
Chapter III.

For a perfect gas, c(p) is given by (5.2) and the formulas for simple waves
become more specific. Using (5.5) we find that

(5.22) e(p) = (c(p) - Ce).
y— 1

Hence

(5.23) c(p(€)) = c0 +

and from (5.17)

(5.24) a(u) = c0 + u.

Therefore, forward simple waves (u = €) are defined implicitly by

(5.25) u = F(x — [c0 +



Systems of Linear Equations 389

and backward simple waves (u = —€) by

y+1(5.26) u = G(x + [c0 — u]t).

Let us discuss briefly a forward simple wave in a perfect gas. Such a wave
is defined implicitly by equation (5.25) for some function F. Suppose that u
= u0 at the point (x0, t0) of the (x, t)-plane so that

u0 = F(x0 — [c0 + u0]to).

Then u = u0 at every point on the line

F Y+l 1 1 ,'+l 1(5.27) x — Lc0 +
2

t = xo — +
2

to

through (x0, t0). Indeed at any point (x, t) on this line

y+1 y+1
F — +

2
uo] = F — +

2
uo] =

The line (5.27) is a characteristic. In general, for a forward simple wave
in a perfect gas, the C÷ characteristics are straight lines on which u is
constant and their inclinations are given by

dx y+l
(5.28)

2

(see Problem 5.5). Just as in Sections 5 and 6 of Chapter III, we can use
this result to study forward simple waves and the development of shocks.
Suppose for example that the profile of a forward traveling wave at t = 0 is
given by

u(x, 0) = f(x), —00 <x
Then, for all t, u is defined implicitly by

/ [ y+l 1
2

u]t

If is any point on the x-axis and u0 = f(x0), then u = u0 along the line

I y+l 1
(5.29) x — Lc0 + 2

U0] t = xo

through (x0, 0). If the initial velocity profile is nondecreasing with x (i.e.,f
is a nondecreasing function of x), then the lines (5.29) do not intersect in
the upper half plane and hence no shocks develop for t 0. On the other
hand, if the initial velocity profile is decreasing with x over any interval of
the x-axis, some of the lines (5.29) will intersect in the upper half plane and
a shock will develop at some positive time t.

We can give a more physical interpretation of the above explanation of
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the development of shocks. Since u = e, it follows from (5.5) that du/dp =
c(p)/p > 0. Therefore, the larger the value of u at a point of the wave, the
larger the value of the density p. In particular, u > 0 corresponds to p > Po
(compression) while u < 0 corresponds to p <Po (rarefaction). Since the
speed of propagation of a given point in the wave profile is given by (5.24)
(or (5.28)), it follows that the larger the density at the point, the larger the
speed is. Suppose now that initially two points A and B of the density
profile are such that A is behind B and the density at A is larger than the
density at B. Since A travels to the right faster than B, A will eventually
reach B and the density profile between A and B will become vertical. This
means that the density profile will develop a jump discontinuity which we
call a shock.

Some applications of simple waves to the study of flows resulting from
the motion of pistons in cylindrical tubes filled with a perfect gas can be
found in Garabedian,3 Chapter 14, Section 2 and in Landau and Lifshitz,6
§94.

Problems
5.1. Derive the system of equations (5.6).
5.2. Derive the linear approximation (5.10) of system (5.1).
5.3. Show that the linear approximation (5.10) of system (5.1) leads to the

one-dimensional wave equation of acoustics.
5.4. Derive formulas (5.22), (5.23) and (5.24) which are valid for a perfect

gas.
5.5. For a forward simple wave in a perfect gas show that

(a) The Riemann invariants are r = u and s = 0.
(b) The C÷ characteristics must satisfy equation (5.28)
(c) The C+ characteristics are straight lines on which u is constant.

[Hint: Use the fact that r must be constant on the characteris-
tics.]

5.6. For a backward simple wave in a perfect gas formulate and prove
results analogous to those of Problem 5.5.

5.7. Consider a perfect gas in a semi-infinite cylindrical pipe (x > 0) and
suppose that at the end x = 0 of the pipe the velocity is known for all t,
i.e., u(0, t) = f(t). Show that in the resulting forward simple wave in
the pipe, no shock will develop if f(t) is a nonincreasing function oft,
while a shock will always develop if f(t) is increasing over any time
interval.

5.8 In equation (5.19) introduce the new variablesx' = —x andu' = —u to
obtain the equation

au'
(5.30)

at

Compare (5.30) with (5.16) and conclude that backward simple
waves are really forward simple waves in a different frame of refer-
ence. (Remember that u is the velocity in the direction of the positive
x-axis.)
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Chapter III
The theory of general nonlinear first order p.d.e.'s can be found in

Garabedian, Chapter 2, Chester, Chapter 8 or John, Chapter I.

Chapter VI

§2. The equations of mathematical physics can also be derived by means of
a variational procedure; see Courant and Hubert, Volume I, Chapter IV,
for a discussion of this technique. Tikhonov and Samarskii derive many
equations by using techniques similar to those of this chapter.

Chapter VII
§1. For a definition and discussion of properties of generalized solutions of
Laplace's equation see Garabedian, Chapter 8. The proof of our Theorem
1.1 follows from Theorem 11.2 and the results given in Garabedian. A
proof of the real analyticity of solutions of general second order elliptic
equations with analytic coefficients can be found in Garabedian, page 145.
§2. The form of Laplace's operator in general curvilinear coordinates can
be found in Kellogg. Excellent treatments of spherical harmonics are
contained in Muller or Hochstadt.
§3. Properties of the inversion mapping (3.13) are easily obtained by using
analytic function techniques; see Kaplan, Chapter 7, §1.
§5. A proof of the maximum principle for solutions of a general class of
elliptic equations with variable coefficients appears in Garabedian, Chap-
ter 7, §1.
§6. Several different proofs for the existence of a solution of the Dirichlet
problem are discussed in Garabedian, Chapters 7—10. These include con-
formal mapping techniques in the case of two independent variables, the
Hilbert-space method of orthogonal projection and Dirichlet's principle,
and the methods of potential theory and integral equations.
§8. Introductory discussions of topics in Fourier series such as convergence

392
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in the mean, the proof of Parseval's relation (8.34) for square-integrable
functions, other modes of convergence and methods of summation are
given in Tolstoy. The nature of convergence of Fourier series near a jump
discontinuity (Gibbs' phenomenon) is discussed and illustrated in Carslaw.
A list of Fourier series expansions of selected functions can be found in
Tolstoy, page 147. Also, see Salvadori and Schwarz, page 372, for a useful
collection of series.

§9. Discussions of properties of Green's functions and examples of these
functions for certain boundary value problems can be found in Courant
and Hilbert, Vol. I, Chapter V, and Weinberger, Chapter V. Stakgold, Vol.
II, discusses several methods of determining Green's functions and gives
examples. Weinberger, Chapter VIII, treats the construction of Green's
functions by analytic function techniques in the case of two independent
variables.

§11. The expansion of harmonic functions in terms of harmonic polyno-
mials is covered in Hochstadt.

§16. The Green's function for the Neumann problem is discussed in
Garabedian, Chapter 7.

Chapter VIII
§1. The reduced wave equation (1 .25) is studied in great detail in Tikhonov
and Samarskii, Chapter VII.
§3. The energy method extends naturally to a large class of problems and
can be used as a basis for existence proofs; see Courant and Hilbert, Vol.
II, page 656, and Garabedian, page 434.
§6. Baker and Copson contains an interesting discussion of Huygens'
principle, and deals with several physical problems. This reference also
contains a direct derivation of Kirchoff's formula (5.9). Generalized solu-
tions of Cauchy problems are defined and briefly discussed in Petrovskii,
Chapter 2, §9.
§8. The general Sturm-Liouville problem is treated in detail in Stakgold,
Vol. I, and Titchmarsh, Part I. Both of these references contain examples
of specific Sturm-Liouville problems and proofs of the associated eigen-
function expansion theorems.

§10. Titchmarsh, Part II, contains many examples of eigenfunction expan-
sions associated with second order elliptic p.d.e.'s in two or more variables.
In addition, properties of eigenfunctions and the distribution of eigenval-
ues are discussed for certain p.d.e.'s with variable coefficients.

Chapter IX

§1. The problem (1.1), (1.2), (1.3) with general non-zero boundary dataf1
and 12 can be solved using Laplace transform methods; see Churchill's
book on operational calculus.
§3. A verification of (3.5) appears in Tikhonov and Samarskii, p. 248. This
book also contains a good selection of exercises.
§4. A verification that (4.3) gives the solution to the initial value problem
(4.1), (4.2) can be found in Tikhonov and Samarskii, page 509, where it is
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assumed only that 4) is piecewise continuous and bounded. Sobolev, Chap-
ter XXII, contains a proof that (4.7) is actually a solution.

Chapter X
A recent book on the mathematically theory of linear and nonlinear

waves is Whitham.

The Method of Integral Transforms
Integral transforms provide an effective tool for solving many problems

involving linear p.d.e.'s. The classical theory of the Fourier transform and
its applications can be found in Sneddon. The Laplace, Mellin, Hankel and
other transforms are also discussed in this book. Integral transform meth-
ods are also referred to as operational methods.

Potential Theory
A powerful method for the study of boundary value problems for

Laplace's equation is the method of integral equations. This method is
based on representing solutions in the form of integrals which are fre-
quently encountered in physics and are known as potentials. The book of
Gunter contains a detailed development of potential theory and its applica-
tions.

Additional Problems and Physical Applications
The book of Budak, Samarskii and Tikhonov consists of a large collec-

tion of problems of mathematical physics. Many of the problems are solved
in detail. Another similar collection of problems can be found in Lebedev,
Skalskaya and Uflyand. The books of Ames present an extensive survey of
the theory and application of nonlinear p.d.e.'s that arise in engineering.

Numerical Methods
The theory and application of numerical methods for the solution of

problems involving the Laplace, wave and heat equations can be found in
the book of Forsythe and Wasow.

Equations of Mathematical Physics. (Advanced treatment)
A modern, more advanced treatment of the equations of Mathematical

Physics using functional analysis and distributions (Dirac delta functions,
etc.) can be found in the books of Stakgold and Vladimirov.

Modern Theory
In recent years, great advances in the general theory of linear p.d.e.'s

have been achieved using the methods of functional analysis and in particu-
lar the theory of distributions. The study of this modern theory requires a
higher level of mathematical sophistication than is necessary for the study
of the present book. Treves' book "Basic Linear P.D.E.'s" is a good link
between classical and modern theor,y. The books of Hormander and Treves
("Linear P.D.E.'s with Constant Coefficients") first develop the theory of
distributions and then use it as the framework of the modern theory stud-
ied in their books. Friedman treats parabolic equations and Lions and
Magenes study nonhomogeneous problems in the modern setting. The
nonlinear theory can be found in Lions.
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Answers to selected
problems

Chapter I

2.3. 2x+2y—z—2=O.
2.4. x + 3y — 7 = 0.

2.5. (a) z = V'x2 + y2. (b) z = — V'x2 + y2. (c) Not possible.

3.2. (5, —4, —1) or any non-zero scalar multiple of this vector.

3.4.

3.5. x = cos t, y = sin t, z = —cos t — sin t, 0 � t � 2ir.

4.1. x(t) = + f
4.2. (a)x = t/2 + cit. (b)x = 1 +

4.3. (a)x = t/2 + (b)x = 1 +

4.4. (a) x2 = (c — (b) xr'eI = c.

4.5. x = (1 — t <

4.6. (a) r1 = c1 cos t + c2 sin t, x2 = —c1 sin t + c2 cos t.

(b) x1 = cos t, x2 = —sin t; —0o <t

C12
4.7. (a)x1

= c1 + c2edt' x2
= c1 + c2edlt

397
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0.

Chapter II

(c) u = F((x + z)/y,

Introduction to Partial Differential Equations

2
(b) x1

= 1 + e2t'
X2

= 1 + e2t'
—00 <t < 00•

1.4. (b) x4 + y4 = c1, z = c2.

2.2. y = x, — arctan z =

2.3. c1, — arctan z = C2; y > 0.
y

2.6. u2=x+y+z.
2.7. (a) y + z = c1, y — x/log (y + z) = c2. (b) (y — x)/xy =
Cl, ZIXY = C2.

2.8.(a)x+y+z=c1, x2+y2+z2=c2. (b)x2+y2=c1, (x2+
y2)y2 + z2 = C2.

3.1. (a) u = F(z, y). (b) u = F(z, x2 + y2). (c) u = F(x, y3 —
fx—y x—y

z).

\ z xy

3.2. (a) u = F(y/x, (1/2)xy — arctan z).

(x—y)2—z2) (d)u=F(x+y+z,xyz).

(b)z=xy.
z)2=0.
4.2. (a) F(x — y, = 0, where F is any C' function satisfying F(— 1, 1) =

Chapter III
2.1. General integrals: (b) F(z2 — x2, (x + y)2 — (y + z)2) = 0. (f)

z=tan[(1/2)xy +f(x/y)]. (g)F(x+y+z,xyz)=O. (h)z2+y2=
f(x).

2.4. u1 = yze_

xy
(b)z=

xy + 2x — y

x+y x2+y2 3y2+1(c)z=1. (e)z=
2

e . (g)z=x3—j----—1.

4.1. (a) Unique solution. (b) Infinitely many solutions. (c) No solu-

tion.

4.2. Solutions exist only for linearf, fit) = ct.

5.5. z = x/(1 + y).
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Chapter V

2.1. (a) x1 ± 2(—x2)2 = c, x2 < 0. (d) x12 + x22 = c.

2.2. (a)x = ± + c, y <0. (b)y = cex2.

6.1. (a) u = xy — x3/3 + (y — x2/2)2. (b) u xy — x3/3 + sin (y —
x2/2). (c) u = xy — x3/3 + y — x2/2 + 5/6.

7.7. (a) Elliptic in (x, y) plane. (b) Elliptic for xI < 1, hyperbolic for lxI
> 1, parabolic for IxI = 1. (c) Elliptic for y > hyperbolic for y <

parabolic for y =

Chapter VII

7.5. (b) u(r, 0) =
log r

+ (4r — r1) sin 0.
log2 3

7.7. (a) u(r, 0) = ir2/3 + cos nO. (b) u(r, 0) = 2/ir

cos 2n0. (c) u(r, 0) = ir2/6 —2

1 —
cos nO. (d) u(r, 0) = 4/ir sin nO.

n=1 fl

8.14. Yes. Apply the Weierstrass M-test, using Mn2.

8.23. (a) L 2L 1

cos
(2n —

1)2 L I L

L—a0�x<
L_a<<L+a

(b) sin sin sin —i—
= ' 2 2

I L+a
0, <x�L.

13.3. G(r', r) =
[

1 — 1

],
where rk = r +

Ir — rkj Ir — I

(0,0, 2k), rk = r* + (0,0, 2k);k = 0, ±1, ±2, . . . and r* is symmetric
to r with respect to the plane z = 0.

13.5. G(r', r) = GB(r, r) — GB(r', r*), where GB is the Green's function
for the full ball and r* is symmetric to r with respect to the plane z = 0.
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Chapter VIII
2.1. (a) t = €12. (b) (i) t = 2, (ii) t = 9, (iii) t = 4.

2.4. (a) u(ir, t) = 0 for t = 0, ir/2, 3ir/2, 2ir, while u(ir, ir) = 1/2.
u(—ir, t) = u(ir, t) for t � 0. (b) u(ir, t) = 0 for t = 0,
IT/2, u(ir, ir) = 1/2, u(T, t) = 1 for t � 3n/2.
4.1. t = R.

4.2. (a)t = 4. (b)t = 9. (c)t = — 1.

6.2. (a) For n = 2: u(0, t) = t for 0 � t � 1, u(0, t) = t —

fort>1. Forn=3: u(0,t)=tfor0�t<1, u(0,t)

= 0 fort> 1. (b)Forn = 2: u(0, t) = 1 forO � t < 1, u(0,t)

= 1 — t(t2 — 1)h12 for t > 1. For n = 3: u(0, t) = 1 for 0 � t < 1,
u(0, t) = 0 fort> 1.

Chapter IX

1 —
2.1. u(x, t) = 4U/ir / sin nx

n=1 fl

2.6. u(x, t) = 100.

2.7. u(x, t) = aU/L + 4U/ir sin
nira

cos cos eL2
2L 2 L

4.3. x2, x3, t) = (U1 + U2) +

4.8. u(r, t) = U0.

4.10. u(r, t) = U1 [i — 2a/IT sin e
a21]

4.11. (a) Extend the initial temperature distribution x2, x3), x3 > 0, to

all of R3 as an odd function of x3 and apply (4.3). (b) Extend the initial
temperature distribution x2, x3), x3 > 0, to all of R3 as an even
function of x3 and apply (4.3).
4.14. Express the solution u as a superposition u = u1 + u2 where u1
satisfies (4.14) and u2 satisfies (4.19), (4.20), (4.21).

Chapter X

3.2. (a) The initial condition for v1 is inconsistent with (2.17). (b) In
(2.17), f can be any C1 function satisfying f(0) = 1, while
g(x) = (x/co)2.
3.3. (a) C1: x = t + (1 — fl, x1° = I — f. (b) (i) C2: x =

(ii) C2: x
= 1 + 2t' x2° = 0.

3.4. C2: x = 0.

3.9. The quadrilateral has vertices (0, 0), (L/2, — L/2c0), (L, 0) and (L/2,
L/2c0).
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see also Sound waves
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Analytic functions

of complex variables, 245
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of several real variables, 98

Analytic surface, 132
Ball in 1
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Becker, E., 359, 382, 391
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63, 95
Bernoulli, Daniel, 201
Bessel's equation, 269, 327
Bessel's functions, 269, 327
Biharmonic operator, 115
Birth and death process, 94
Boltzman equation, 52
Boundary of a set, 2
Boundary value problem, 161, 169

see also particular equation
Canonical form

of first order equations, 133
of second order equations, 137-143

Cauchy-Kovalevsky theorem, 104, 168, 271
for second order equations, 109
for systems, 110
general, 132

Cauchy problem, 96—111, 132—133

see also Initial value problem
Cauchy-Riemann equations, 245, 357, 362
Characteristic cone, 122, 148, 274
Characteristic conoid, 148
Characteristic curves and surfaces, 116

importance of, 124—126
methods for finding, 117—124
of first order linear p.d.e.'s, 118, 119
of first order quasi-linear p.d.e.'s, 127
of heat operator, 118, 122
of hyperbolic p.d.e.'s, 147
of Laplace's operator, 118, 122
of linear systems, 367, 376
of parabolic p.d.e.'s, 147
of quasi-linear systems, 380
of wave operator, 118, 122

Characteristic direction, 115
Characteristic equation, 115
Chiang, C. L., 86, 95
Churchill, R. V., 212, 245, 248, 260, 327,

330, 345, 356, 358, 391

Class C", 4
Classification of second order p.d.e.'s

in several independent variables, 144
in two independent variables, 138

Coddington, E. A., 21, 23
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Conformal mapping, 247
Continuous dependence of solution on data

167
Continuous function, 3
Conservation law, 72, 78, 387

series solution of, 110
Conservation of thermal energy, 158
Courant, R. and Hilbert, D., 178, 260
Curl of a vector field, 53
Curves in

as intersections of surfaces, 11
parametric representation of, 11
smooth, 15
tangent vectors to, 11

Cylindrical surface, 14
Descent, method of, 289
Diffusion of waves, 147, 159, 160, 293
Dirichiet problem, 161, 186

continuous dependence on data, 197
existence of solution, 197—199
exterior, 187, 235—239
for a half-space, 241, 244
for an annulus, 205
for the unit disc, 199—206
for unbounded domains, 235—239
uniqueness of solution, 197

Discontinuities of solutions, 72, 125
Discriminant, 137
Distance, 1
Divergence of a vector field, 53
Divergence of a vector field, 53
Divergence theorem, 153
Domain

of a function, 3
Domain of dependence, 281

for hyperbolic systems, 376, 379
inequality, 275

Duhamel's principle
for heat equation, 343, 348, 352
for wave equation, 298, 317, 329

Eigenfunctions, 310
expansion theorem, 323
orthogonalization of, 323
properties of, 323

Eigenvalue problem, 310
for Laplacian, 322

Eigenvalues, 310, 322
properties of, 323

Electric force field, 162
Electromagnetic

field, 52
waves, 146, 166

Electrostatic images, 240—245
Electrostatic potential, 173
Elliptic equation, 139, 144, 146, 148
Energy
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conservation of, 283, 300, 303
inequality, 275, 283
method, 274—280
of a wave, 283

Error function, 347
Euclidean space, 1
Euler's equations of motion, 358
Euler's relation, 58, 62
Expectation (mean value), 91
Exterior domain, 236
Feller, W., 86, 87, 89, 95
Finite differences, method of, 249—257
First integrals of vector fields, 29

functionally independent, 28
methods for determining, 35—41

First order p d e., 41-44, 57-95
almost linear, 58
initial value problem, 64, 101, 103
linear, 58
nonlinear, 58
quasi-linear, 58
solution of, 58

Fluid flow, 25
Forsythe, G E. and Wasow, W. R., 250, 260
Fourier, J. B , 201
Fourier method

see Separation of variables
Fourier series, 206—223

convergence in the mean, 221
cosine series, 211
differentiation of, 218, 222
double, 319, 325
Fourier convergence theorem, 212
Parseval relation, 216
sine series, 211
uniform convergence of, 218

Friedman, A , 344, 356
Function

analytic, 96, 98, 245
continuous, 3

Functionally independent functions, 28
Garabedian, P., 142, 152, 358, 381, 382,

390, 391
Gas dynamics, 73, 82
General integral, 61
Generalized solution

of a system, 377
of the wave equation, 295

Gradient of a function, 6
Graph of a function, 5
Gravitational force field, 162
Gravity waves, 366
Green, G., 225
Green's function

by method of images, 240—245
for a ball in R3, 227
for a disc, 232
for a domain in R2, 225
for a domain in R3, 224
properties of, 225—226

Green's identities, 155—156, 191, 256
Hadamard's example, 168—169
Haight, F. A., 77, 95
Harmonic function, 172

analyticity of, 172, 233
conjugate, 245
maximum principle for, 197
mean value property of, 194
pole of, 175

Harmonic modes of vibration, 310, 313
Heat conduction, 147

equation of, 159
in plates, 350
in rods, 331

Heat equation, 110, 114, 118, 122, 139,

141, 144, 156—161, 331—356

initial-boundary value problem, 159, 331
continuous dependence on data, 333
maximum-minimum theorem, 333
more than one dimension, 349
nonhomogeneous boundary conditions,

339, 351
nonhomogeneous equation, 352
solution for one-dimensional equation,

336, 340, 347
uniqueness, 333, 335

initial value problem, 343

continuous dependence on data, 344
extreme value theorem, 344
more than one dimension, 349
nonhomnogeneous, 348
uniqueness, 344

Heat flux, 160, 257
Heat operator, 114
Heaviside function, 295
Hirsch, W. M.

see Nasell, I

Holmgren's uniqueness theorem, 133
Homentropic flow, 358
Homogeneous functions, 59
Huygens' principle, 291
Hyperbolic equation, 139, 144, 146
Hyperbolic systems, 361

canonical form, 364
characteristic curves, 367, 376
initial value problem, 369, 381

finite difference scheme, 375
method of characteristics, 371
quasi-linear, 381, 383
successive approximations, 372

Images, method of, 240-245
Implicit function theorem, 9, 13, 43, 72
Initial-boundary value problem, 159, 165

see also particular equation
Initial value problem

for first order linear p.d.e.'s, 126
for first order nonlinear p.d.e 's, 101, 103
for first order quasi-linear p.d.e.'s, 64
for heat equation, 343
for Laplace's equation, 169
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for ordinary differential equations, 17, 20,
100

for systems, 110, 369
for wave equation, 165, 166
see also particular equation

Integral curves of vector fields, 24, 45
Integral equation, 18
Integral surfaces of vector fields, 45—46
Inversion with respect to a circle, 183, 184
Inversion with respect to a sphere, 184, 185,

236
Isentropic flow, 358, 382
Jacobian, 12, 43, 134, 136, 137
Jones, S E

see Ames, W. F.
Kalaba, R.

see Bellman, R
Kaplan, W 15, 23
Kellogg, 0 D , 155, 170, 199, 225, 260
Kirchhoff's formula, 286
Kober, H , 248, 260
Lagrange series, 111
Landau, L. D. and Lifshitz, E M. 266, 390,

391
Laplace operator, 114, 155

in polar coordinates, 174
in spherical coordinates, 174

Laplace'sequation, 110, 111, 114, 118, 122,
139, 142, 144, 150, 161—163, 171—
260

analyticity of solutions, 172, 233
boundary value problems for, 161
Dirichiet problem, 186
mixed problem, 189
Neumann problem, 188

Lax, P. D., 73, 95
Lebesgue, H., 197, 199
Level surface of a function, 6
Limit of a function, 3
Lifshitz, E. M.

see Landau, L. D.
Lindmayer, J. and Wrigley, C. Y., 353, 355,

356
Linear first order p.d.e.'s, 41

existence and uniqueness, 127
initial value problem, 126—132
nonexistence and nonuniqueness, 130

Linear operator, 113
Linearpd.e., 113
Liouville's theorem, 232
Lipschitz conditions, 19, 21, 22
Longmire, C L., 52, 56
Maximum-minimum theorem for heat equa-

tion, 333
Maximum principle, 194

discrete, 255
Mean value property, 194

discrete, 252
Membrane

equation of equilibrium, 162

equation of vibrations, 165
Mixed problem, 161

I and Hirsch, W M., 89, 95
Neighborhood of a point, 2
Neumann problem, 161, 257—260
Noh, W F and Protter, M. H , 82, 95
Nonisentropic flow, 359
Nonlinear p.d.e 's, 58, 101, 103, 109, 110

see also quasi-linear p d e.'s
Normal domain, 155
Numerical methods, 250
Order of a p.d.e., 113
Ordinary differential equations

Cauchy problem for, 17
existence theorem for, 20—21
general solution of, 17
initial condition for, 17
initial value problem for, 17
solution of, 17
systems of, 20

Parabolic equation, 139. 144, 147
Parseval relation, 216, 329, 355—356
Petrovskii, I. 0 , 105, 111, 199, 238, 253,

254, 260, 344, 356, 363, 371, 372,
391

Plasma physics, 51
Poincaré, 199
Poisson equation, 226
Poisson integral, 204, 228
Poisson kernel,

for a ball in R3, 228
for a disc, 204

Poisson process, 91
Pole of a harmonic function, 175, 181
Polya process, 93
Population, growth or decline, 9 1—95
Potential of a force field, 162
Principal part, 115
Probability generating function, 87
Protter, M. H.

see Noh, W. F.
Pure birth process, 92
Quasi-linear first order p.d e , 58

existence and uniqueness of solution, 65
general integral of, 61
initial value problem, 64
n independent variables, 63
nonexistence of solution, 69
nonuniqueness of solution, 69
series solutions of, 106
solution surface of, 60

Rabenstein, A. L., 21,23
Range of a function, 3
Range of influence, 281, 376, 379
Redheffer, R M.

see Sokolnikoff, I. S.
Resonance, 330
Riemann invariants, 383
Riemann mapping theorem, 248
Richards, P. I., 80, 95
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Schistosomiasis, 89—90
Sectionally continuous function, 208
Sectionally smooth function, 212
Separation of variables, method of

for heat equation, 336, 349
for Laplace equation, 173—179
for wave equation, 267, 308, 318, 322

Set in
boundary of, 2
bounded, 2
closed, 2
connected, 2
interior point of, 5
open, 2

Shock, 72, 78, 385, 386, 388, 389
Simple waves, 386
Smith, 0. D., 250, 260
Sobolev, S. L., 323, 330
Sokolnikoff, I. S. and Redheffer, R. M., 358,

391
Solenoidal vector field, 53
Solution curve, 25
Sound

propagation of, 273
waves, 146, 165, 382, 385, 388

Specific heat, 158
Speed of sound, 359, 382, 386
Sphere in 2
Spherical coordinates, 174
Spherical harmonics, 178, 268
Steady state phenomena, 146, 161,173,257
Steady state temperature, 146, 161
Stochastic processes, 86—95
String equation, 164
Sturm-Liouville problem, 310
Successive approximations

for hyperbolic systems, 372
for Laplace's equation, 253

Superposition principle, 149—152
Systems of first order equations, 357—391

almost linear, 360, 361
elliptic, 362
hyperbolic, 362
linear, 360, 361
nonlinear, 360
quasi-linear, 360, 381
solution of, 361

Systems of ordinary differential equations,
20

associated with a vector field, 25
first integrals of, 29
methods of solution of, 35—4 1

Tangent plane, 7—9
Taylor, A., 9, 13, 15, 23, 43, 51, 56, 63, 95,

218, 249, 260

Taylor series

of solutions of p.d.e.'s, 103, 105
one variable, 96
several variables, 97

Telegraph equation, 306, 361, 378

Telephone network, 86—89
Thermal conductivity, 146, 157
Thermonuclear reactors, 52
Third boundary value problem, 161
Tolstoy, 212, 220, 260, 319, 330
Traffic flow, 76

Transformation of coordinates, 134, 137,
145

Transistor theory, 353
Transmission line equations, 358, 373, 378—

379
Tricomi equation, 114, 120, 139
Tricomi operator, 114
Ultrahyperbolic equation, 144
Vector fields, 24

curl of, 53
divergence of, 53
first integrals of, 29
integral curves of, 25, 45
integral surfaces of, 45
solenoidal, 53

Vector potential, 53
Vibrating membrane, 165, 317—322

drcular, 326—328
nodal curves, 321
rectangular, 317

Vibrating string, 163
finite, 308—317
fundamental frequency, 313
harmonic modes of, 310, 313
infinite, 273, 295—298

nodes of, 313
semi-infinite, 304—306

Vibrations
forced, 329
of a membrane, 273
of a string, 273
of bounded bodies, 299, 322

Vladimirov, V. 5., 323, 330, 349, 356
Wasow, W. R.

see Forsythe, 0. E.
Watson, G. N., 269, 270, 330

Wave equation, 109, 110, 114, 118, 122,

139, 140, 144, 163—166, 261—330

for a nonhomogeneous medium, 279
initial-boundary value problem, 165, 299,

322
uniqueness, 303

initial value problem, 164, 271
continuous dependence on data, 272,

291
discussion of solution, 29 1—299
solution of, 284-290
uniqueness, 289

nonhomogeneous, 298
reduced, 268

Wave operator, 114
Waves

cylindrical, 267, 270
gravity, 366
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reflection of, 305—306
simple, 386
sound, 382, 385, 388
spherical, 266

Weierstrass M-test, 218
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Well-posed problem, 166-168
Wing, 0.

see Bellman, R.
Wrigley, C. Y.

see Lindmayer, J.
Yule process, 92
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